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Preface

The idea that guided the first French edition of the present book was to give to
newcomers in Fluid Dynamics a presentation of the field that was anchored in
Physics rather than in Applied Mathematics as it had been the case so often in
the past. Presently, however, connections with Physics are getting stronger and this
is fortunate. Indeed, Physics is, etymologically, the science of Nature and fluids
occupy a major place in Nature. They are everywhere around us and their motion
(their mechanics) influences our everyday life, at least through the weather. Any
physicist can hardly escape being fascinated by the sight of some remarkable fluid
flows like breaking waves or the gently travelling smoke ring.

The connection between Fluid Mechanics and Applied Mathematics is certainly
understandable by the very small number of equations that control a fluid flow.
This is fascinating for an applied mathematician, especially if keen on the theory of
partial differential equations. Actually, a few decades ago, expertise in asymptotic
expansions, singular perturbations, and other mathematical technics was a necessary
condition to make progress in the theory of fluid flows. But the pressure of maths
has certainly lessened in the recent times because of the strong (exponential) growth
of numerical simulations. It is now easier to experiment numerically a fluid flow and
get a detailed description of the solutions of Navier–Stokes equation. Interpretation
of the results may challenge the intuition of the physicist rather than the skill of the
mathematician. But even in the pioneering times, when theoretical investigations
of fluid flows were at the strength of the pencil, famous physicists like Newton,
Maxwell, Kelvin, Rayleigh, Heisenberg, Landau, Chandrasekhar, and others made
essential contributions to the field of Fluid Dynamics. As noted by Heisenberg
himself, the theory of turbulence awaits to be written, and this is still the case.

The present book is based on the lectures I delivered at Paul Sabatier University
in Toulouse during the last two decades. It is intended to beginners in the field
and aims at providing them with the necessary basis that will allow them to attack
most of Fluid Dynamics questions. I have tried, as much as possible, to illustrate
the concepts with examples taken in natural sciences, often in Astrophysics, which
is my playground. Some exercises are offered at the end of each chapter. The
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vi Preface

reader may thus check his/her understanding of the text. Some of the exercises
are also meant to extend the subject in a different way. In that respect, I also
give some references for further reading. As far as maths are concerned, the last
chapter proposes some brief reminders or introduction to the mathematical tools
that are used in the text. With the solutions of the exercises, the book should be
self-contained.

As far as teaching is concerned, the first four chapters constitute the bulk of
a Fluid Mechanics introduction to third year students. The four following chapters
were typically taught to fourth year students, while part of the last ones are currently
taught to students about to start a Ph.D. As the reader will note, some sections are
tagged with �. They can be skipped at first reading and present other illustrations
of the subject of the chapter.

Ending this short preface, I would like to thank the many colleagues who have,
by various means, contributed to the achievement that a book writing represents. I
would like to specially thank Alain Vincent and Hervé Willaime who provided me
with original data of turbulent flows. I have much benefitted from the remarks of
Arnaud Antkowiak, Pierre-Louis Blelly, Boris Dintrans, Katia Ferrière and Thierry
Roudier. They helped me very much at improving various parts of the work. I
cannot forget that this adventure of writing started, thanks to the support and help
of José-Philippe Pérez. I know that my wife Geneviève and my children Clément
and Sylvain will forgive me for the many hours spent outside the real world. The
realization of the present book owes much to the kind support of Dr. Ramon Khanna
of Springer; I thank him very much for his faith in the project. Finally, I should thank
the many students who attended the performance written below, their questions were
always beneficial, their enthusiasm always stimulating and their fear challenging for
the teacher.

Toulouse, France Michel Rieutord
May 2014
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Chapter 1
The Foundations of Fluid Mechanics

1.1 A Short Historical Perspective

The first step in Fluid Mechanics was certainly carried out by Archimedes (�287,
�212) who was a mathematician and a physicist in Antiquity. He formulated a
now well-known theorem which says that a body immersed in a fluid supports an
upward push equal to the weight of the displaced fluid. This is the first result in
the theory of fluid equilibria. Knowledge did not evolve much until the works of
Evangelista Torricelli (1608–1647) and Blaise Pascal (1623–1662). Torricelli did a
famous experiment when he put upside down a tube full of mercury. The liquid went
down a little and left a column of mercury 76 cm high. Hence, it was demonstrated
the existence of atmospheric pressure, the weight of air and the existence of vacuum,
much discussed at the time. Pascal gave a full account of all these phenomena in his
treatise L’équilibre des liqueurs published in 1663. The static of fluids was almost
set up. Fluid dynamics started with the work of Leonhard Euler (1707–1783) who
formulated for the first time the equation of motion of an inviscid fluid. Daniel
Bernoulli (1700–1782) contributed to the study of such fluids with theorems on
energy conservation that revealed fundamental properties of fluid flows.

The next important step has been the formulation of the effects of viscosity. This
was done during the nineteenth century with the work of Henri Navier (1785–1836),
Georges Stokes (1819–1904) and Jean-Louis-Marie Poiseuille (1799–1869). Let
us note that Isaac Newton (1642–1727) already showed the existence of viscosity
with experiments and left his name associated with a kind of fluids (the most
common ones like air and water) now known as the Newtonian fluids. Navier–Stokes
equation, which controls the dynamics of viscous fluids, was first formulated by
Navier in the case of a fluid with constant viscosity.

Then, fluid mechanics took various ways. We shall mention only the main ones.
Studies of flows stability started with the works of Helmholtz (1868) and Lord
Kelvin (1880). Heat transport was studied by W. Prout (1834), Rumford (1870),
A. Oberbeck (1879), H. Bénard (1900), J. Boussinesq (1903) and Lord Rayleigh
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2 1 The Foundations of Fluid Mechanics

(1916). Turbulence focused the interest of O. Reynolds (1883), L. Prandtl (1920),
A. Kolmogorov (1940), etc.

Presently, fluid dynamics is even more diversified, but some old problems resist:
turbulence remains one of the main unsolved problem of classical physics.

1.2 The Concept of a Fluid

1.2.1 Introduction

Fluids gather a very large number of forms of matter which, as far as the most
common are concerned (liquids and gases), can be characterized by the ease with
which one can deform them. This point of view expresses the difference between
the “solid state” and the “fluid state” which are both “mechanical states”. Common
experience assumes that such a difference is obvious, however we shall see that a
more detailed inspection somehow blurs the difference between solids and fluids.
In fact, this difference is contained in a law, known as the rheological law, which
states how the matter reacts to (is deformed by) a stress (a force per surface unit).
Generally speaking, matter is considered as fluid if the internal (shear) stresses only
depend on velocity gradients.

We shall come back on these concepts, but let us give a simple example to
appreciate what is behind this definition. We consider a cork floating on water in
a container. The cork is in A and we wish to move it to B. Because water is a fluid,
the force we need to apply on the cork just depends on velocity gradients. It can be
made as small as we wish; we just need to move the cork more slowly.

From the point of view of thermodynamics, we may say that the states A and
B and cannot be distinguished: the energy and entropy variations needed to make
the system passing from one state to the other can be made vanishingly small. On
the contrary, if we did a similar experiment of a solid, some work would have been
needed and the energy of the states A and B would differ.

1.2.2 Continuous Media

To describe the motion of a fluid, obviously we cannot (and do not wish to!) describe
the motion of all its molecules or atoms individually. We are only interested in their
mean motion. This means replacing the set of atoms or molecules which constitutes
the fluid by a medium that behaves as this mean motion. Such an assumption is
valid when the scale L, which we are interested in, is large compared to the mean
free path ` of atoms or molecules. The ensuing approximation is measured by the
Knudsen number

Kn D `

L
(1.1)
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which needs to be small compared to unity. The cases where Kn � 1 is the subject
of the dynamics of rarefied gases based on the kinetic theory of gases. In general,
it is not included in fluid mechanics. An introduction to the relation between fluid
dynamics and gas kinetics is given in Chap. 11.

Thermodynamics and the dynamics of continuous media share many similarities
in their description of matter. Indeed, in these two approaches, the microscopic
components of matter are ignored and only mean values are retained. The drawback
of such a way of doing is that some quantities can only be obtained by experiments,
like heat capacity in thermodynamics or viscosity in fluid mechanics, the equation of
state in thermodynamics or the rheological law in fluid mechanics. Their theoretical
determination needs a more detailed approach based on the statistical properties of
the microscopic components of matter (see Chap. 11).

1.3 Fluid Kinematics

The first step needed to understand the motion of fluids is to find the right tools that
will allow us to describe a fluid flow. This is the role of fluid kinematics that study
fluid motion without worrying about its causes.

1.3.1 The Concept of Fluid Particle

Very often, we shall use the concept of fluid particle or fluid element. This is an
idealized view of a piece of fluid: it is so small that fluid properties are uniform
inside. However, it is big enough so as to contain a large number of atoms
or molecules, allowing us to assume that the fluid is locally in thermodynamic
equilibrium (hence the temperature is defined). Such a particle is not a point mass:
it owns a surface which authorizes contact forces with other particles.

1.3.2 The Lagrangian View

A first way for describing the fluid motion is to give the trajectories of all the
fluid particles. Such a description is the Lagrangian one. It may be summarized
by the set of trajectories of all fluid particles that were in the domain Dt0 at t D t0.
Mathematically, it is the set

Dt D fx.t; xA/ j xA 2 Dt0 ; t � t0g

Such a description is used in some specific studies where it provides simplifications.
However, generally speaking, its use is not very popular because of some intrinsic
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difficulties in the expression of stresses. We refer the reader to the end of this chapter
for a more detailed presentation.

1.3.3 The Eulerian View

The most natural way to represent the motion of a fluid is certainly the intuitive one
used to describe the flow of water in a river. In such a case, we would say that the
stream is fast in one place at a given time and hardly noticeable in some other place
and some other time. Thus doing, one describes the velocity field as a function of
space and time. Actually, if the vector function

v.x; y; z; t/

is known, then everything is known about the fluid flow. The use of the velocity field
as a function of position and time gives the Eulerian description of the flow. This is
the most popular way of doing and we shall use it almost all the time from now on.

1.3.4 Material Derivatives

Quite often, we shall consider the time evolution of some quantity, like �, which is
attached to a fluid particle that one follows.

To express the variations of �, we introduce the derivative

D�

Dt

also called material derivative or Lagrangian derivative (see Sect. 1.10). � may
be any quantity (scalar, vector, tensor) depending on space coordinates and time
� � �.x; y; z; t/. When we attach � to the motion of a fluid particle, the coordinates
x; y; z are functions of time

� � �.x.t/; y.t/; z.t/; t/

where x.t/; y.t/; z.t/ represent the trajectory of the fluid particle. Now, the total
variation of � is

D� D �.t C dt/� �.t/ D @�

@t
dt C @�

@x
dx C @�

@y
dy C @�

@z
dz

D
�
@�

@t
C vx

@�

@x
C vy

@�

@y
C vz

@�

@z

�
dt
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where we observed .dx=dt; dy=dt; dz=dt/ are just the xyz-components of the velocity
of the fluid particle that we are following. Thus,

D�

Dt
D @�

@t
C vx

@�

@x
C vy

@�

@y
C vz

@�

@z
(1.2)

or

D�

Dt
D @�

@t
C .v � r /� (1.3)

The operator D=Dt therefore symbolizes a differentiation along a curve, namely
along the trajectory of a fluid element. We shall see that this quantity appears very
often in the equations governing fluid flows. The term .v�r/� is called the advection
term and represents the transport of the quantity � by the velocity field v. In a
steady flow, it represents the variations of � along a streamline (a curve which is
everywhere tangential to the velocity field, see Sect. 1.3.7).

Another illustration of the role played by the advection term is given by the case
where � is conserved by each particle. Thus,

D�

Dt
D 0

In such a case, an observer measuring � at a given point as a function of time will
see the variations of � corresponding to the passing particles displaying their value
of �. Formally, this means

@�

@t
D �.v � r/�

where the second equation shows that the temporal variations of � at a given point of
space is only due to the advection term characterizing the transport. If v is uniform
then any function �.r � vt/ is such that D�=Dt D 0.

1.3.5 Distortion of a Fluid Element

An important aspect of the motion of fluid particles is their proper motion. Indeed,
we mentioned above that, although of vanishingly small size, fluid particles own
a surface and a volume. Thus, they can be distorted by a non-uniform flow. To
visualize this effect, it is convenient to consider a fluid particle of parallelepipedic
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Fig. 1.1 Evolution of a fluid
element

shape which we may characterize by a vector � (see Fig. 1.1). If we express the
variation of � with time we find

� C ı� D � C v.x C �/ıt � v.x/ıt

Assuming that � is very small compared to x, we have

v.x C �/ D v.x/C .� � r /v C O.�2/

at first order and thus

ı� D .� � r /v ıt (1.4)

Using indicial notations1

ı�i D �j @j vi ıt

In this expression we discover the tensor “velocity gradient” whose components
are @i vj . As any second order tensor, it can be decomposed into its symmetric and
antisymmetric parts:

@ivj D 1

2
.@ivj C @j vi /C 1

2
.@ivj � @j vi / D sij C aij

These two parts play very different roles. Let us first focus on the antisymmetric one.
We note that it is represented by only three components (a12; a23; a31). Actually,

1We shall often use these notations which are very handy. In Chap. 12 “Mathematical comple-
ments”, we give a summary of what is needed to go ahead with these notations. Let us recall here
that we always use the implicit summation on repeated indices. Thus a � b D P3

iD1 aibi is just
noted aibi .
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these components are related to the curl of the velocity field. Indeed,

aij D 1

2
.@ivj � @j vi / D 1

2
.ıikıjl � ıilıjk/@kvl D 1

2
�ijm�mkl@kvl

where we introduced the Kronecker symbol ıij and the completely antisymmetric
tensor �ijk (its components are just ˙1 or 0, but see Chap. 12 for basic properties).
Therefore,

aij D 1

2
�ijm.r � v/m (1.5)

This expression shows that the three components (a12; a23; a31) are just the com-
ponents of the curl of v up to a factor 1/2, since �ijk is either zero or unity.
Expression (1.5) is useful to understand the physical meaning of Œa�, and con-
sequently that of the curl. We may uncover it by calculating the variation of �

associated with Œa� only, namely

ı�i D �j ajiıt D 1

2
�jim�j .r � v/mıt D

�
1

2
.r � v/ � �

�
i

ıt

This expression shows that the variation of a fluid element associated with Œa� is just
a solid body rotation at the angular velocity

� D 1

2
r � v

This result gives us the physical interpretation of the vector r � v, also called the
vorticity and enlights the wording curl for the operator r�.

Since a solid body rotation does not distort our parallelepipedic fluid element, its
deformation must be contained in the remaining part of the velocity gradient tensor,
namely Œs�. This symmetric part of the velocity gradient tensor is called the rate-
of-strain tensor. The distortion effect of Œs� on a fluid element can be explicited by
considering the variations of the length of the vector �. Indeed,

ı.� 2/ D 2�i ı�i D 2�i �j @i vj ıt D 2�i�j sjiıt

where we used the fact that �i �j aij D 0 since aij is antisymmetric and �i �j is
symmetric. Thus, only Œs� contributes to the variation of the length of � and thus
to the distortion of the fluid particle. In order to appreciate more completely the
effects of the deformation it is useful to express the variations of � in a basis where
Œs� is diagonal. Such a basis always exists because Œs� is symmetric. In this new basis
the variation of � associated with Œs� is

ı�i D �j sjiıt D �i siiıt
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where no summation is assumed on the indices in the last expression. This equation
shows that the fluid element is stretched in the i -direction when sii > 0 or
destretched when sii < 0. It is then easy to compute its volume variation at first
order due to the velocity field:

ıV D .�1 C ı�1/.�2 C ı�2/.�3 C ı�3/ � �1�2�3 D �1�2�3

�
ı�1

�1
C ı�2

�2
C ı�3

�3

�
C O.ı�2/

D �1�2�3.s11 C s22 C s33/ıt C O.ı�2/

But s11 C s22 C s33 is just the trace of Œs� and we have

Tr.s/ D sii D r � v ;

so that the relative volume variation of the fluid element is

ıV

V
D .r � v/ıt (1.6)

This result shows that the dilation or contraction of fluid elements is associated
with the trace of the rate-of-strain tensor, which is also the divergence of the
velocity field. Hence, expanding elements appear in flows with positive divergence
while contracting elements are where divergence is negative. Note that this result is
independent of the chosen basis as the trace of a tensor is invariant in basis changes.

1.3.6 Incompressible Fluids

An important model for the description of fluid flows is the so-called incompressible
fluid. For such a fluid the density is assumed constant. This assumption is very
popular as it much simplifies the equations of motion (and the physics of the fluid).
In addition it is quite a good approximation for liquids which are only slightly
compressible. Moreover, we shall see later that even gas flows can be modeled
by such a fluid provided the velocity is small compared to sound velocity (see
Sect. 3.2.5).

From (1.6) we see that if the volume of a fluid element does not (or cannot) vary,
then

r � v D 0 (1.7)

Fluid particles neither expand nor contract. This is the main constraint that must be
met by a fluid whose density variations can be ignored. We shall find this relation
again when studying the implications of mass conservation.
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1.3.7 The Stream Function

In the foregoing section, we found out that the flow of an incompressible fluid must
meet the constraint r � v D 0. Let us now consider a further simplified case when
the fluid flow is two-dimensional. If x and y are cartesian coordinates in this plane,
r � v D 0 reads

@vx
@x

C @vy
@y

D 0 :

It is easy to show (see exercise 3) that (1.7) implies the existence of a function
 .x; y; t/ such that

vx D @ 

@y
; vy D �@ 

@x
(1.8)

called the stream function. The expression of a two-dimensional flow is therefore
contained in that of a unique scalar field, namely the stream function. This wording
explicits the fact that isolines of the stream function are always tangential to the
velocity field and therefore trace out the velocity field lines or the streamlines.
Indeed, along a streamline

d D 0 ” @ 

@x
dx C @ 

@y
dy D 0 ” �vydx C vxdy D 0

ˇ̌
ˇ̌ vx dx
vy dy

ˇ̌
ˇ̌ D 0 ” v parallel to d l

When the flow is three-dimensional this idea can be generalized but two stream
functions are needed. This is easily understood if one remembers that in three
dimensions the velocity field has three components that are constrained by one
equation (1.7). Hence, one is left with two independent quantities. Without loss
of generality, one can write

v D r � .�a/C r � r � . a/

In this expression the choice of a is not imposed. In spherical geometry one usually
choose the radial vector r. The first term is then called the toroidal velocity field
because the field lines are on a torus. The second term is the poloidal field; its field
lines are generally not confined on a surface except in the axisymmetric case where
they can be drawn in a meridian plane ' = Cst.
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1.3.8 Evolution of an Integral Quantity Carried by the Fluid

In the following, we shall meet the time evolution of a quantity (mass, momentum,
energy) associated with a fluid domainD (volume, surface, line). In the case where
the points of the fluid domain have a velocity equal to that of the fluid at every
instant, the domain is called a material domain. It is always made of the same fluid
particles. In other words this domain is a kind of macroscopic particle.

We shall later need the expression of the material derivative of a quantity f
integrated over a material domain V.t/. So, we first express

d

dt

Z
V.t/

f .r; t/dV

as a function of the local derivatives of f . For this, we write

d

dt

Z
V.t/

f .r; t/dV D

Z
V.tCdt/

f .r C dr; t C dt/dV 0 �
Z
V.t/

f .r; t/dV

dt
(1.9)

We develop the first integral to first order and since dr D vdt, we obtain

f .r C dr; t C dt/ D f .r; t/C Df

Dt
dt

However, volume V.t C dt/ is slightly different from volume V.t/ become the
velocity field distorts it. To take into account this distortion, we shall still integrate
over V.t/ but with a distorted elementary volume dV 0. From (1.6) we know that

dV 0 D dV C dVr � v dt D dV.1C r � v dt/ :

Using this expression in (1.9), we finally get

d

dt

Z
V.t/

f .r; t/dV D
Z
V.t/

�
Df

Dt
C f r � v

�
dV D

Z
V.t/

�
@f

@t
C r � .f v/

�
dV

(1.10)

The same exercise can be repeated with a contour entrained by the fluid. Let us
evaluate

d

dt

I
C.t/

A.r; t/ � d l
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As above, we need considering the variations of the fluid element d l, which is
modified at time t C dt just as � in (1.4). Hence,

d l0 D d l C .d l � r /vdt

and thus

d

dt

I
C.t/

A.r; t/ � d l D
I
C.t/

�
DA
Dt

� d l C A � .d l � r /v
�

(1.11)

which is more handy if we use indices

d

dt

I
C.t/

A.r; t/ � d l D
I
C.t/

�
DAi

Dt
C Aj @ivj

�
dli (1.12)

This expression can be simplified by noting that

Aj @ivj D @i .Aj vj /� vj @iAj and @jAi � @iAj D �jik.r � A/k

Hence, it turns out that

d

dt

I
C.t/

A.r; t/ � d l D
I
C.t/

�
@Ai

@t
� .v � .r � A//i

�
dli (1.13)

1.4 The Laws of Fluid Motion

In the foregoing section we presented the quantities that are used to describe a
fluid flow. In this new section we shall express the laws of Physics that govern
the evolution of these quantities. They are derived from the general principles
expressing the conservation of mass, momentum and energy.

1.4.1 Mass Conservation

1.4.1.1 The Equation of Continuity

We consider a fixed volume of fluid V whose mass is

M D
Z
.V /

� dV :
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Its variation with time is given by the mass flux density �v crossing the surface .S/
bounding the volume .V /. Let dS be the surface element oriented by the external
normal n so that dS D ndS. Hence

dM

dt
D �

Z
.S/

�v � dS ”
Z
.V /

@�

@t
dV D �

Z
.V /

r � �v dV (1.14)

”
Z
.V /

�
@�

@t
C r � �v

�
dV D 0 (1.15)

Note that the minus sign in (1.14) comes from the orientation of the surface .S/:
when v is parallel to dS the mass M decreases. Equation (1.15) being true for any
volume the integrand must be vanishing and we have

@�

@t
C r � �v D 0 (1.16)

which expresses locally the conservation of mass. This equation is often referred to
as the continuity equation. One may also write it using the material derivative of �,
namely

D�

Dt
D ��r � v (1.17)

which shows that the density of a fluid element varies because of its volume variation
expressed by r � v, since its mass is constant.

Equations (1.16) and (1.17) can also be derived directly from (1.10) using a
volume attached to fluid particles and setting f D �. One may remark that the
flux term

R
.S/
�v � dS disappears then.

As expected, when � DCst, all these equations lead back to (1.7), namely the
case of incompressible fluids.

1.4.1.2 Material Derivative with Mass Conservation

In most cases physical quantities like energy, momentum, are not attached to the
volume of elements but to their mass dm D �dV. This implies that when writing
the balance between losses and gains for a fixed volume as in (1.14), we always face
integrals taking into account the flux of the quantity carried by the mass flux across
(S). In general, if � is such a physical quantity and S� its volumic sources, we have

Variations of � in V D � carried by v through S C Sources of �
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or, mathematically,

d

dt

Z
.V /

�� dV D �
Z
.S/

�� v � dS C
Z
.V /

S� dV

which can be rewritten as

Z
.V /

@��

@t
dV D �

Z
.V /

r � .��v/dV C
Z
.V /

S� dV

”
Z
.V /

�
�
@�

@t
C �

@�

@t

�
dV D �

Z
.V /

.�r � �v C �v � r�/dV C
Z
.V /

S� dV

While using the equation of continuity, we find that

Z
.V /

�
@�

@t
dV C

Z
.V /

�v � r� dV D
Z
.V /

S� dV (1.18)

or
Z
.V /

�
D�

Dt
dV D

Z
.V /

S� dV (1.19)

As (1.15) this relation is valid for any volume V and is therefore valid locally as

�
D�

Dt
D S� (1.20)

We shall see that the equations of momentum, energy or entropy all share this
structure. � is then a velocity field (the momentum per unit mass), the internal
energy or the entropy per unit mass.2

Let us now rederive (1.20) using a volume V.t/ attached to the fluid. From its
definition, this volume contains the same fluid particles at any time. So,

Variations of � in V.t/ D Sources of �

or, mathematically, it reads

d

dt

Z
V.t/

�� dV D
Z
V.t/

S� dV

2One may often find in literature the terminology “specific entropy” which also means entropy per
unit mass.
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From (1.10)

d

dt

Z
V.t/

�� dV D
Z
V.t/

�
D.��/

Dt
C ��r � v

�

dV D
Z
V.t/

�
�

�
D�

Dt
C �r � v

�
C �

D�

Dt

�
dV

Using the equation of mass conservation (1.17),

H) d

dt

Z
V.t/

�� dV D
Z
V.t/

�
D�

Dt
dV (1.21)

We immediately find (1.20). This derivation is much faster than the preceding one
and we shall prefer it in the following.

1.4.2 Momentum Conservation

1.4.2.1 The Stress Tensor Œ� �

Before expressing momentum conservation, we need precising the way fluid
elements interact. Contact forces are specific to the mechanics of continuous media.
Their existence shows again the fact that fluid particles are not point masses but
small volumes with a surface on which contact forces can be exerted. Let us consider
an elementary surface dS on which an elementary force d f is applied. These two
vectors are related in a very general way by

d f D Œ��dS

or with indices

df i D �ijdSj

We thus define the stress tensor Œ�� and at the same time the stress T D Œ��n applied
on a given point of the surface whose normal is n. Thus defined, the stress is a force
per unit surface. One then makes the hypothesis that Œ�� depends only on the local
properties of the flow.3

3This implies in particular that the stress tensor is independent of the surface on which the stress is
computed. It is independent of its orientation n and its curvature radii. That would not be the case
if the given surface is the seat of surface tension at the interface between a gas and a liquid. Some
additional terms must be taken into account (see (1.70)).
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Let us show now that Œ�� is a symmetric tensor. If S is a surface covering some
volume (V), we note that the resultant of stress forces on S can also be written as
the resultant of volumic forces since (see Sect. 12.2):

Z
.S/

�ijdSj D
Z
.V /

@j �ijdV

Hence, one can always associate a volumic force with a surface stress. If we consider
a fluid element, the above identity just says that the resultant of contact forces on a
fluid particle is equal to the divergence of the stress tensor. Let us now consider the
torque exerted by the stress forces on the volume. We have

mi D
Z
.S/

.r � d f/i D
Z
.S/

.r � Œ��dS/i

mi D
Z
.S/

�ijkxj �kldSl D
Z
.V /

@l .�ijkxj �kl/dV (1.22)

But this torque can also be expressed with the volumic force associated with the
stress:

mi D
Z
.V /

.r �DivŒ��/i dV D
Z
.V /

�ijkxj @l�kldV (1.23)

where we introduced the vectorial divergence Div of a symmetric tensor which is
such that

.DivŒ��/i D @j �ij D @j �ji

The equality of expressions (1.22) and (1.23) implies that

@l .�ijkxj �kl/ D �ijkxj @l�kl ” �ijkılj�kl C �ijkxj @l�kl D �ijkxj @l�kl

” �ijk�kj D 0

which is equivalent to saying that the stress tensor is symmetric as shown in Chap. 12
(see (12.5)), so

�ij D �ji : (1.24)

The symmetry of Œ�� has been obtained after equating (1.22) and (1.23). This
implicitly assumes that the fluid does not contain any torque density.
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1.4.2.2 The Equation of Momentum

We are now in a position of using the conservation of momentum for some arbitrary
fluid volume. The variation of momentum of a fluid volume thus reads

d

dt

Z
.V /

�vdV D
Z
.V /

fdV C
Z
.S/

Œ��dS

or, with words,

Variation of total momentum = Resultant of volumic forces
+ Resultant of stresses applied on (S)

Using the theorem of divergence and (1.21), we find

Z
.V /

Dv
Dt
�dV D

Z
.V /

fdV C
Z
.V /

DivŒ��dV

or, locally,

�
Dv
Dt

D DivŒ��C f (1.25)

This equation is just Newton’s second law applied to a fluid element of unit volume.
We note in passing that the expression of acceleration

a D Dv
Dt

D @v
@t

C .v � r/v

is nothing but the material derivative of the velocity. This expression of the
acceleration can be obtained in a more intuitive manner by considering a fluid
particle whose trajectory is .x.t/; y.t/; z.t//. Its velocity at time t where the particle
is at .x; y; z/ is just the fluid velocity v.x; y; z; t/. The velocity along the trajectory
is thus v.x.t/; y.t/; z.t/; t/ while its acceleration, also along the trajectory, is

dv
dt

D @v
@x

dx

dt
C @v
@y

dy

dt
C @v
@z

dz

dt
C @v
@t

Since at the given point . dx
dt ;

dy

dt ;
d z
dt / D v, we may write

dv
dt

D vx
@v
@x

C vy
@v
@y

C vz
@v
@z

C @v
@t

D @v
@t

C .v � r/v D Dv
Dt

which shows that the material derivative of the velocity is indeed the acceleration of
the fluid particle.
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The term .v �r/v can also be written .v �r/v D .r �v/�vCr 1
2
v 2 (see (12.42))

which gives another expression for the acceleration, namely

Dv
Dt

D @v
@t

C .r � v/ � v C r 1
2

v 2 (1.26)

Now if we look back to (1.25), we see that the acceleration of a fluid element is
controlled by two volumic forces, namely f andDivŒ��.

The volumic force f is specific to the problems at hands. Such a force may be
the gravitational force (usually arising through buoyancy), the Laplace force if the
fluid is electrically conducting (see Chap. 10) or an inertial force like the Coriolis
one (see Chap. 8).
DivŒ�� is the volumic force due to stresses. Unlike f it is always there (except in

very special cases like the one describe in Sect. 1.10.2) and represents contact forces
between fluid elements. It depends on the nature of the fluid. Its expression needs a
full discussion that will be presented in Sect. 1.5.

1.4.3 Energy Conservation

The equation translating the conservation of energy expresses the first principle of
thermodynamics with a fluid element. The energy balance reads:

d

dt

Z
.V /

�.
1

2
v2 C e/dV D

Z
.V /

f � vdV C
Z
.S/

vi�ijdSj �
Z
.S/

F � dS C
Z
.V /

QdV

where e denotes the specific internal energy,4 F is the (surface density of) heat flux
and Q the power of local heat sources. These sources may come from chemical
reactions (burning), from nuclear reactions (in the central part of stars) or from a
phase transition (latent heat release in water vapour condensation for instance).

Using words, the latter equation would read:

The variation of energy (kinetic and internal) per unit of time =
the power of volumic forces + the power of stresses

+ the heat flux through S + the power of local heat sources

Transforming surface integrals into volume ones and using (1.21), we get

Z
.V /

�
D.1

2
v2 C e/

Dt
dV D �

Z
.V /

r � FdV C
Z
.V /

f � vdV C
Z
.V /

@j .vi�ij/dV C
Z
.V /

QdV

4The existence of internal energy for a fluid element assumes that the fluid is locally at
thermodynamic equilibrium. We shall come back on this point thoroughly when we discuss the
constitutive relations.
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the volume being any volume, the equation is valid locally, hence:

�
D.1

2
v2 C e/

Dt
D �r � F C f � v C @j .vi �ij/C Q (1.27)

1.4.3.1 The Equation for Internal Energy

The foregoing equation of energy combines the internal and kinetic energies.
However, the evolution of kinetic energy is governed by the sole equation of
momentum. Indeed, taking the scalar product of (1.25) with v, we find

�
D.1

2
v2/

Dt
D f � v C vi @j �ij (1.28)

which is just the expression of the kinetic energy theorem applied to a fluid element:
the change of kinetic energy of a fluid element comes from the work of applied
forces. Subtracting the evolution of kinetic energy from (1.27), we find the evolution
of internal energy:

�
De

Dt
D �r � F C �ij@j vi C Q (1.29)

which expresses locally the first principle of thermodynamics: the variation of
internal energy of a fluid particle is equal to the heat received (�r � F CQ) plus the
work of the stresses �ij@j vi . We should note that this work depends solely on the
local rate-of-strain tensor Œs� since Œ�� is symmetrical, �ij@j vi D �ijsij.

1.4.3.2 The Equation for Entropy

Instead of using the internal energy to express the conservation of energy, it is often
useful to choose the entropy. This is easily derived from the equalities relating the
various thermodynamic quantities

de D Tds � PdV D Tds C Pd�=�2

These equations link total derivatives and thus apply to all partial derivatives with
respect to time and space. Hence they can be combined to yield a relation between
material derivatives:

De

Dt
D T

Ds

Dt
C P

�2
D�

Dt
(1.30)
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Combined with mass conservation (1.16), it gives

T�
Ds

Dt
D �r � F C �ij@j vi C Pr � v C Q (1.31)

This equation expresses that the variation of entropy of fluid elements is the result
of heat sources inside the elements plus the heat flux coming from the neighbouring
elements, plus some heat generation due to (viscous) stresses (but see Sect. 1.6.2).

1.4.4 The Constitutive Relations

The foregoing (1.16), (1.25), (1.29) or (1.31) need now to be completed by the
expression of the stress tensor Œ�� and the heat flux F as functions of the quantities
used to describe the fluid (velocity, temperature, density, . . . ). Such relations are
called the constitutive relations and are specific to the microscopic nature of the
fluid. They will describe the thermodynamic, the mechanical and the thermal
behaviour of the fluid. The constitutive relation(s) describing the mechanical
behaviour is called the rheological law. It may also include solids. As we shall see
below, the frontier between fluids and solids is not as neat as common sense would
say.

1.5 The Rheological Laws

1.5.1 The Pressure Stress

In order to give an expression for Œ��, we shall first consider the case of a
homogeneous and isotropic fluid in thermodynamic equilibrium. The isotropy of the
fluid and the fact that the stress tensor depends only on the local properties of the
fluid demands that the eigenvalues of Œ�� (which is always diagonalizable because
of its symmetry) are identical in the three directions of space (Fig. 1.2). Hence, we
can write:

�ij D �Pıij (1.32)

where P is a scalar function that we shall identify to pressure. One may wonder
whether such a definition gives the same function to which we are used to in
Thermodynamics, namely the intensive variable associated with the volume. To
check this point, we just need to consider the equation of internal energy (1.29)
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Fig. 1.2 The pressure force

(S)

dS

−PdS

neglecting F and Q. The variation of internal energy ıe for a small volume 	V
during ıt is

	V�ıe D �ij@ivj	V ıt D �Pr � v	Vıt D �Pı.	V /

where we used (1.6). Since �	V is just the mass 	m of the small volume,
ı.	V /=	m is the variation of the specific volume (the volume occupied by a unit
mass). Hence, the foregoing relation, taken in the limit 	V ! 0, leads to the
differential relation �P D @e

@v where v is the specific volume. This expression is
the well-known one of Thermodynamics.

From (1.32) we also find out the volumic force associated with the pressure.
Taking the divergence of Œ�� yields:

fi D @j �ij D �ıij@jP D �@iP D �.rP/i
This expression shows that the volumic pressure force is the opposite of the pressure
gradient: pressure forces push the fluid elements towards the low pressure regions
as expected. The International System unit of pressure is the Pascal but many others
are still in use (see box).
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The units for pressure (or stress)

Pressure and more generally the stress is expressed in pascals, however other units are often
used; we give here a short memo of this little zoo.

• The pascal (Pa) is the official unit of the International System; this is the stress exerted by a
force of 1 Newton on 1 square metre. This is a rather small quantity since the atmospheric
pressure is of the order of 105 Pa.

• The bar = 105 Pa is the appropriate multiple close to the atmospheric pressure.
• The millibar =100 Pa was the unit used in meteorology; it is now replaced by the

hectopascal.
• The barye D 0:1Pa is the pressure unit in the CGS system and represent the stress of one

dyne per square centimeter.
• The atmosphere D 101;325Pa is an old fashion unit which is the mean atmospheric

pressure at sea level.
• The kilogram force per square centimetre is also an old fashion unit, which has been much

used in engineering. This is the pressure exerted by the weight of a one kilogram mass on
one square centimeter; thus 1 kgf/cm2 ' 98100 Pa which is approximately 1 bar.

• The pound per square inch = psi is the British equivalent of the kgf/cm2 . 1 psi D 6894:7 Pa
• Lastly, the torr ou millimetre of mercury : This is the pressure exerted by a 1 mm thick

layer of mercury in the Earth gravity field. 1 torr D �Hgg1mm D 13595 � 9:8 � 0:001 '
133; 3 Pa. 760 torr � 1 atm.

1.5.2 The Perfect Fluid

The foregoing discussion brings us to the case of an ideal fluid whose stress tensor
would be composed solely of the pressure term. Such a fluid is called a perfect fluid
or an inviscid fluid. We shall see below that it is actually a convenient idealization
of real fluids.

If we write the momentum equation for such a fluid, it reads

�
Dv
Dt

D �rP (1.33)

which is known as Euler equation. Here, all the extra volumic forces, which are
problem dependent, have been removed.

Perfect fluids are also endowed with the property that they do not allow any heat
flux. Hence, F is vanishing. If no heat source is present (Q D 0), the equation of
internal energy (1.29) now reads

�
De

Dt
D �Pr � v (1.34)



22 1 The Foundations of Fluid Mechanics

and that of entropy

Ds

Dt
D 0 (1.35)

This latter relation shows us that the entropy of fluid particles in a perfect fluid
remains constant. We find here the first conservation law specific to perfect fluids.
This point will be developed in Chap. 3.

1.5.3 Newtonian Fluids

1.5.3.1 The Viscosities

Everybody has experienced the slow flow of honey compared to water. The two
fluids being of similar density, the pull of gravity on fluid particles is similar and
therefore the very different flowing behaviours they show must be associated with
some intrinsic property. Such a property is manifestly related to the ability of fluid
particles to slide on each other. Water particles slide much more easily than honey
ones! This feature of the fluid is commonly called viscosity. Physically, we see
that this property characterizes the interactions between fluid elements or, in other
words, contact forces. As such, they are surface forces and thus should be included
in the stress tensor, added to the pressure. Hence, the stress tensor components
should read:

�ij D �Pıij C �visc
ij

In order to find out the expression of this new term, we shall consider a fluid in
equilibrium (both mechanical and thermodynamic). We perturb this equilibrium
so that the fluid moves. We assume that the perturbation is small enough so that
the fluid particles remain close to the thermodynamic equilibrium. We need now
to find out which quantity is appropriate to measure the disequilibrium. At first
glance, one may say that the velocity is the appropriate quantity. This is not the case
(unfortunately!) because we note that if the velocity field is uniform, then a simple
change of the reference frame will make it vanishing and thus fluid elements are
still in equilibrium. Hence, non-uniformity of the velocity field is essential. We may
thus think to the derivative of the velocity field, namely @ivj . This is still not the
good quantity. Indeed, we have seen in Sect. 1.3.5 that the velocity gradient tensor
is composed of two parts, the symmetric and antisymmetric ones, which describe a
very different evolution of the fluid particles. The antisymmetric part describes the
local rotation of fluid particles: it can be zeroed by the use of a rotating frame. We are
thus left with the symmetric part of the velocity gradient tensor, the so-called rate-
of-strain tensor, which cannot be nullified by any change of frame. The rate of strain
thus appears as the most simple measure of the fluid mechanical disequilibrium at
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the level of a fluid particle. We therefore write

�ij � fij.skl/

The six functions fij are unknown and depends, a priori, on the local properties of
the fluid. One way to simplify the problem is to use our assumption of the fluid being
close to equilibrium. In such a case, the rate of strain is small and the functions can
be expanded around zero:

�ij D fij.0/C Lijklskl C � � � (1.36)

with

Lijkl D
�
@fij

@skl

�
.Œs�D0/

(1.37)

fij.0/ is the value of the stress when the rate of strain is zero. It is obviously equal
to �Pıij, namely to the stress at equilibrium, which comes only from the pressure.
The rank-4 tensor L characterizes also the equilibrium properties of the fluid. As
before we assume that the fluid is isotropic. Since L is symmetric with respect to
permutation of i and j and k and l , the only rank-4 tensor sharing these properties
is of the form:

Lijkl D a.ıikıjl C ıjkıil/C bıijıkl (1.38)

where a and b are two scalar coefficients specific to the fluid. We thus find

�ij D �Pıij C 2asij C bskkıij

or

�ij D �Pıij C a.@i vj C @j vi /C b.@kvk/ıij

In general, one gives the following equivalent form of Œ��:

�ij D �Pıij C 


�
@i vj C @j vi � 2

3
.@kvk/ıij

�
C �.@kvk/ıij (1.39)

where we set a D 
 and b D � � 2=3
. 
 is called the dynamic shear viscosity
while � is the dynamic volume viscosity or bulk viscosity (sometimes also called
second viscosity). These two coefficients are expressed in pascal second (Pa�s) also
called the poiseuille. We may note that Pa s � kg m�1 s�1. Now, we note that

Tr

�
@ivj C @j vi � 2

3
.@kvk/ıij

�
D 0 :
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so that it is natural to introduce

cij D @i vj C @j vi � 2

3
.@kvk/ıij : (1.40)

These are the components of the shear tensor Œc� which corresponds to a deforma-
tion without change of volume.

All the fluids which verify the rheological law (1.39) are called the Newtonian
fluids. Despite the severe simplifications that have been done, this constitutive
relation is verified by a large number of gas or liquids. This comes from the fact
that it depends solely on very general properties of the fluid at equilibrium, namely,
isotropy and closeness to local thermodynamical equilibrium. In Sect. 1.9.1 we’ll
discuss the limits of these hypothesis and will introduce the non-Newtonian fluids.

We shall also very often use another viscosity coefficient, namely the kinematic
viscosity defined as

� D 


�

which is expressed in m2�s�1.

1.5.3.2 The Microscopic Side

We introduced viscosity by considering the friction of fluid elements on each others.
However, one may wonder what is going on at the microscopic level. Let us first
remark that friction implies an exchange of momentum: we can slide indefinitely
on the ground if we do not lose our momentum. Viscosity thus characterizes this
exchange of momentum between fluid particles. Such an exchange is of course due
to atoms or molecules which carry that quantity in their thermal random motion.

A simple dimensional argument gives us the order of magnitude of kinematic
viscosity. Indeed, such a coefficient is dimensionally the product of a velocity
by a length. At the microscopic level, typical velocity and length scales are the
mean thermal velocity and the mean free path (see Chap. 11 for a more detailed
introduction). These scaling imply that the kinematic viscosity of a gas increases
with temperature and decreases with density. Conversely, the viscosity of liquids
tends to decrease with temperature or increase with density, since in this case the
exchange of momentum is rather due to attractive interactions than to collisions.
Thus, for a given fluid, viscosity is minimum near the liquid–gas phase transition.
The foregoing arguments show that the less viscous fluids will be found with low
temperature gases.5

5The fluids with very low viscosities are extremely interesting experimentally as they allow us
to reach very high Reynolds numbers in a small size experiment. This is the reason why many
experiments have been realized with helium near its critical point (2.2 bars and 5.2 K). In these
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Table 1.1 Transport coefficients and Prandtl numbers of some common fluids at a temperature of
20 ıC (data are from various sources)

Fluid 
 (Pa s) � (m2 s�1) � (W m�1K�1) P
Air 1:8 10�5 1:5 10�5 0.026 0.71

H2 8:9 10�6 1:0 10�4 0.19 0.69

Water 1:0 10�3 1:0 10�6 0.6 7.0

Ethanol 1:2 10�3 1:5 10�6 0.18 16

Glycerin 1.3 1:0 10�3 0.28 104

Olive oil 0.1 1:0 10�4 0.17 1,400

Mercury 1:55 10�3 1:14 10�7 8.7 0.025

In Table 1.1 we give values of the viscosities of some common fluids. We did not
include values of the bulk viscosity. The reason is that this quantity has been scarcely
measured; such a measurement is indeed difficult. One needs a flow without shear
and with large values of r � v. This is realized using sound waves. For nitrogen,
Lighthill (1978) finds � 	 0:8
. On the theoretical side, using an approach based
on Boltzmann equation, one can show that bulk viscosity is zero for monatomic
gases (at least in the Boltzmann description).

In many cases, however, � is just neglected and speaking of viscosity
refers to the shear viscosity 
. This approximation is usually known as Stokes
hypothesis. We see that it is certainly well verified by monatomic gases and
liquids.

1.5.3.3 The Momentum Equation and Navier–Stokes Equation

The expression of the rheological law for Newtonian fluids allows us to give an
explicit form of the momentum equation for these fluids. It reads

�
Dv
Dt

D �rP Cr .v �r
/Cr � .v �r
/C
	v �v	
Cr..
=3C�/r � v/C f

(1.41)

conditions indeed, helium reaches its minimum viscosity. It is not a liquid, thus atoms interactions
are weak and while still a gas, the velocity of atoms is minimized. The kinematic viscosity obtained
in such conditions is � ' 2 10�8 m2/s.

We shall not discuss the case of superfluids which needs to be approached from the
side of quantum mechanics and refer the reader to the book of Guyon et al. (2001) for an
introduction.
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This equation may also be written

�
Dv
Dt

D �rP C 


�
	v C 1

3
rr � v

�
C 2.r
 � r /v

Cr
 � r � v C
�
r� � 2

3
r


�
r � v C f (1.42)

This is Navier–Stokes equation. This equation much simplifies for a fluid with
constant density and constant viscosity. One then obtains the so-called Navier6

equation:

�
Dv
Dt

D �rP C 
	v (1.43)

where we discarded external body forces f. This equation is used either when density
variations are negligible or, if they are not, as a first step before attacking the
complications due to compressibility.

1.6 The Thermal Behaviour

1.6.1 The Heat Flux Surface Density

The next constitutive relation to be addressed is that prescribing the heat flux density
as a function of the other variables. The heat flux essentially appears when the
temperature field is non-uniform.7 This means that the temperature gradient is the
appropriate quantity to measure the distance to thermal equilibrium. We shall write:

F � F.rT /

As for the mechanical constitutive relation, we also assume that the fluid elements
are not far from equilibrium and therefore that the temperature gradient is small; we
can thus expand to first order the heat flux density, namely

Fi .rT / D Fi .0/� �ij@j T

6Henri Navier (1785–1836) published this equation in 1822 in Mémoire sur les lois du mouvement
des fluides, in Mém. de l’Acad. des Sciences.
7Other processes like gradients of chemical species may also generate a heat flux but these
processes usually give a weak effect that will be neglected in this book.
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where

�ij D �
�

@Fi

@.@j T /

�
@j TD0

is the tensor of thermal conductivities. If the fluid is isotropic, conductivity is the
same in all directions and we can write �ij D �ıij. Noting that at equilibrium the
flux is vanishing, we have Fi .0/ D 0. We find the well-known Fourier law, namely

F D ��rT : (1.44)

The minus sign has been introduced so that the thermal conductivity is positive. As
shown in the next section, the sign of this quantity is controlled by the second law
of Thermodynamics. As we introduced the kinematic viscosity for the momentum
diffusion, it is also convenient, as far as heat transport is concerned, to introduce the
heat diffusion coefficient or thermal diffusivity

 D �

�cp
(1.45)

which is also expressed in m2=s. The ratio between the kinematic viscosity � and
this quantity is

P D �


(1.46)

and called the Prandtl number which is specific to each fluid. Note however that this
number may vary with temperature and density since diffusion coefficients usually
depend on the thermodynamic state of the fluid.

1.6.2 The Equations of Internal Energy and Entropy

With the foregoing Fourier and Newtonian rheological laws, we are in a position to
write a complete equation for internal energy or entropy. If we consider (1.29) and
replace F and Œ�� by their respective expression, we find that

�
De

Dt
D r � .�rT / � Pr � v C D C Q (1.47)

where

D D �
visq
ij @j vi D @j vi

�

.@ivj C @j vi � 2

3
.@kvk/ıij/C �.@kvk/ıij

�
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represents the viscous dissipation. This term may also be written as

D D �
sij C aij

� �

cij C �.@kvk/ıij

� D sij
�

cij C �.@kvk/ıij

�

because aijcij D 0 and aijıij D TrŒa� D 0. Using the definition (1.40) of cij, it turns
out that

2sij D cij C 2

3
.@kvk/ıij ;

which implies

D D 1

2

�
cij C 2

3
.@kvk/ıij

� �

cij C �.@kvk/ıij

�

Developing this expression and using the fact that the trace of Œc� is zero (Tr[c] =
ıijcij =0), we find

D D 


2
cijcij C �.@kvk/

2 (1.48)

or, explicitly

D D 


2
Œc211 C c222 C c233 C 2c212 C 2c213 C 2c223�C �.r � v/2

Later, we shall use the more condensed expression

D D 


2
.r W v/2 C �.r � v/2 (1.49)

Now, the entropy equation is deduced from (1.31), namely

�T
Ds

Dt
D r � .�rT /C D C Q (1.50)

This expression may be used to show that the Second Principle of Thermodynamics
implies the positivity of transport coefficients like the viscosities and the thermal
conductivity. For this purpose, we need considering a volume attached to the fluid
particles. The Second Principle says that the entropy of this mass increases more
than the entropy produced either by the internal heat sources or by the external heat
flux. In mathematical terms this is expressed by

d

dt

Z
V.t/

�sdV �
Z
S.t/

�
� F
T

�
� dS C

Z
V.t/

Q
T

dV
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Using (1.21) and (1.50), this inequality may be rewritten as

Z
V.t/

�
�.rT /2=T C D	 dV

T
� 0

As it must be verified for any velocity or temperature field, it implies that

� � 0; 
 � 0; � � 0

These inequalities show that the irreversibility of thermodynamic transforma-
tions is intimately associated with the diffusion phenomena that are represented by
these coefficients.

To summarize, the equations of motion of a Newtonian fluid are

@�

@t
C r � �v D 0 (1.16)

�
Dv
Dt

D �rPCr.v�r
/Cr�.v�r
/C
	v�v	
Cr..
=3C�/r �v/Cf

(1.41)

�
De

Dt
D r � .�rT / � Pr � v C D C Q (1.47)

or

�T
Ds

Dt
D r � .�rT /C D C Q (1.50)

These equations are however still incomplete. We need to specify the thermo-
dynamics relations, which relate the pressure, density and temperature, internal
energy, etc. since the fluid is assumed to be locally at (or asymptotically close
to) thermodynamic equilibrium. These are those characterizing the thermodynamics
including the equations of state. We present them now.

1.7 Thermodynamics

In the foregoing sections we discussed the constitutive relations related to the
mechanical and thermal behaviours. They told us the way the fluid behaves when
it is slightly perturbed from equilibrium. We now complete them with the relations
which specify the actual local thermodynamic equilibrium.
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Let us recall that a medium in thermodynamic equilibrium is characterized by a
relation like

e � e.s; V;N; : : :/ (1.51)

which expresses internal energy as a function of the various extensive quantities of
the system (entropy, volume, number of particles, etc.). From this general relation,
one derives the equations of state:

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

T D @e

@s

P D �@e
@v

�ch D @e

@N

(1.52)

which defines the intensive quantities of the system, the temperature T , the pressure
P or the chemical potential �ch.

1.7.1 The Ideal Gas

The expression of internal energy of an ideal gas as a function of extensive
variables is

e D e0

�
�

�0

���1
expf.s � s0/=cvg (1.53)

Two classical relations come out of this expression:

PV D nRT (1.54)

and

e D cvT D 1

� � 1

P

�
; with � D cp

cv
(1.55)

where R D kBN is the ideal gas constant, or the macroscopic expression of
Boltzmann constant kB using Avogadro number N . n is the mole number and cv

(resp. cp) is the specific heat capacity at constant volume (resp. pressure).
Equation (1.54) may be written as

P D R��T (1.56)
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which is more convenient in fluid mechanics. R� D R=M where M is the mass of
a mole of gas. Specific enthalpy reads

h D cpT D �

� � 1

P

�

while various expressions of entropy can be derived from

Tds D de � P

�2
d� D dh C dP

�

For instance:

s D cv ln.T=T0/� R� ln.�=�0/C s0 (1.57)

s D cp ln.T=T0/� R� ln.P=P0/C s0 (1.58)

s D cv ln.P=P0/ � cp ln.�=�0/C s0 (1.59)

1.7.2 Liquids

If we focus on liquids, thermodynamics is simplified because liquids are little
compressible. In most cases, the density variations mainly come from temperature
variations. A simplified model consists in retaining only such a relationship like

� D �0.1 � ˛.T � T0// (1.60)

which is completed by e D cT. ˛ is the thermal dilation coefficient and c D cv 

cp .

1.7.3 Barotropic Fluids

A symmetrical case to that of liquids appears when the density is solely a function
of pressure

� � �.P / or P � P.�/ (1.61)

In most cases this is not an equation of state of the fluid, but an approximation well
verified in certain circumstances.

Two examples are frequently met: the cases of an isothermal or of an isentropic
ideal gas. For these very cases, pressure is just a function of density:

P D k� or P D K��
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Such a dependence arises when temperature or entropy variations can be neglected.
In the general case, such relations do not exist. The flows are called baroclinic

because isobars and isotherms are inclined with respect to each other. Barotropicity
and baroclinicity may have important consequences on the nature of the flows as it
will be shown in Chaps. 2, 3 or 7.

1.8 Boundary Conditions

The laws of fluid motion that we have established are partial differential equations.
Their solutions are completely defined when boundary conditions and initial
conditions are given. These conditions describe the various interactions (mechanical
or thermal) of the fluid with the outside, which can be a solid, another fluid, the
vacuum or the fluid itself.

1.8.1 Boundary Conditions on the Velocity Field

Two types of boundary conditions are usually met by fluid flows. They describe
respectively the interaction fluid–solid and fluid–fluid. They are called the no-slip
and free-surface boundary conditions.

1.8.1.1 On a Solid Wall

The boundary conditions generally assumed at the frontier between a solid and a
fluid is that the velocity of the fluid equals that of the solid.8 If the solid is at rest,
the fluid velocity must vanish on the boundary

v D 0 on the bounding surface (1.62)

This boundary condition is usually referred to as the no-slip boundary condi-
tion. This condition may be interpreted as if the fluid stick to the solid. This
hypothesis is far not obvious. Actually, it has been much debated by the end
of the nineteenth century. The question was largely solved by G.I. Taylor in
1923 when he studied the stability of a fluid flow between two rotating cylinders
(the so-called Taylor–Couette flow). The agreement between theory (using these

8This assumption means, among other things, that the solid is impermeable which is not always the
case. If the solid is a porous medium, some mass flux may occur through the boundary. Actually,
flows through porous media are very much studied because of their numerous applications like oil
or gas extraction.
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boundary conditions) and experiment showed that the no-slip hypothesis was
certainly quite relevant.9

We may note that if the fluid is perfect (no viscosity), no adherence is possible on
the wall. Of the three conditions (1.62), only a single one remains, namely v � n D 0

where n is the normal to the solid wall. The component of the velocity perpendicular
to the wall vanishes, while the other components are unspecified.

1.8.1.2 On a Free Surface

The other type of boundary conditions on the velocity is the one called the free
surface or free interface. This is the condition to be used when the fluid defines
itself the surface, just like the sea surface is defined by that of the water. Let

S.r; t/ D Cst

be the equation of this surface. At any point of this surface

dS D 0 D @S

@t
dt C dx

@S

@x
C dy

@S

@y
C dz

@S

@z

Similarly as (1.3), .dx=dt; dy=dt; dz=dt/ represents the velocity of the surface, which,
by definition, is also the fluid velocity. Hence, a first boundary condition is

@S

@t
C vx

@S

@x
C vy

@S

@y
C vz

@S

@z
D 0 on S.r; t/ D Cst

or

DS

Dt
D 0 on S.r; t/ D Cst (1.63)

This last relation shows that the material derivative of the surface is zero at the
surface. In other words, the surface is fixed for a fluid particle at the surface, or, a
fluid particle initially at the surface remains attached to it.

We note that this boundary condition is purely geometrical. We did not use any
physical law to write it down. In many situations, it is simplified because the surface
is time-independent. In such a case it reads

v � rS D 0

9A rather complete account of the history of the quest of the correct boundary conditions at a solid
wall may be found in Goldstein (1938, 1965). The irony of the story is that scientists are presently
looking for materials that let the fluid slipping on the walls. This is especially important when
dealing with small pipes in microfluidic (see Tabeling, 2004).
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But rS is a vector perpendicular to the surface. Setting n as the unit normal, the
preceding relation is just

v � n D 0 (1.64)

expressing that the flow is tangential to the surface at the fluid boundary.
At this stage it is worth pointing out that this condition, much simpler than (1.63),

is often used even if the surface is not strictly steady. This approximation is
physically acceptable when the time scales or the length scales of the problem at
hands are far larger than the ones arising from surface waves (capillarity or gravity
waves).

As may be guessed, condition (1.63) is not sufficient to fully specify the solution
of a problem. We need now expressing the continuity of the stress when crossing
the surface. In other words, on each side of the surface the stress must be the same
(up to the sign). For instance, if the surface separates the fluid from the vacuum, we
write

Œ��n D 0 on S.r; t/ D Cst

Together with (1.63), this relation constitutes the free-surface boundary conditions.
If we compare to (1.62), we may note that these boundary conditions are four. The
additional equation is in fact the one that determines the surface S.r; t/ which is
also an unknown of the problem. We shall dwell on this problem more thoroughly
when discussing the propagation of surface waves in Chap. 5.

1.8.1.3 The Stress-Free Boundary Conditions

In many situations the bounding surface is known and it is useful to assume that the
fluid slips freely along the boundary, either because this boundary separates fluids
of very different densities, or because in a first approach of a complex problem,
one wishes to avoid boundary layers generated by a solid–fluid interface or waves
allowed by a moving surface.

A fluid freely slipping on a surface does not exert any tangential stress.
Mathematically, this is expressed by

n � .Œ��n/ D 0 on S (1.65)

This vectorial condition in fact amounts to two scalar conditions and needs to be
completed by the kinematic one (1.64). Conditions (1.65) together with (1.64) now
give three scalar conditions, just like (1.62). These conditions are known as stress-
free or free-slip conditions.
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1.8.2 Boundary Conditions on Temperature

The foregoing boundary conditions described the dynamics of the interaction of the
fluid with its environment. They are related to the momentum equation and mass
conservation. We should now ask for the conditions which are associated with the
equation of energy. Such conditions express the way energy is exchanged through a
bounding surface. Since we restrict our discussion to the case where the boundary
does not allow for mass exchanges, fluxes of energy are only of microscopic origin,
namely from thermal conduction. Generally speaking, these conditions require the
continuity of temperature and energy flux, namely

T D Text and n � F D n � Fext: (1.66)

For a fluid with constant conductivities, the second condition is also a condition on
the temperature gradient.

When we study the equilibrium or the motion of fluids in presence of temperature
gradient, we shall use the notion of perfect conductor. Such a medium is an
idealization of a material that can accept any heat flux. Thus, when a fluid is in
contact with a perfect conductor its temperature is fixed to that of the conductor.

The other extreme case is also useful: it is the perfect insulator. For this medium
the heat flux is set to zero (or fixed to a given value), while the temperature can take
any value. An example is given in Chap. 7.

1.8.3 Surface Tension

Free surface boundary conditions are often taken at the interface of two immiscible
fluids. A complete description of free-surface boundary conditions thus calls for
the introduction of surface tension. This phenomenon is the consequence of the
fact that some energy must be spent to increase the surface of contact between two
immiscible fluids. Only liquids own a surface tension at their boundaries because
the liquid phase is characterized by an attractive interaction between the molecules
(a van der Waals type force). The energy of the liquid is therefore minimized when
each of its molecule is surrounded by other similar molecules. Those molecules on
the boundary have a higher energy. Hence, a larger bounding surface demands more
energy.

If we introduce � , the ratio of the energy variation to the surface variation, namely

dE D �dS; (1.67)

we note that � is both an energy per unit surface and a force per unit length. Let
us therefore consider a surface, delimited by a contour C , taken on the surface
separating two immiscible fluids. If we decompose dS into dldn, dl being locally
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parallel to C and dn perpendicular to it, �dldn can be interpreted as the work done
by a force �dlen to extend the surface by Ldn (L is the length of C ). Thus, the
surface supports a resulting force

R D
I
.C /

�dlen

where en is the outer normal unit vector of C . The use of the divergence theorem in
two dimensions (see Sect. 12.2.3) allows us to transform this integral into

R D
Z
.S/

r� dS (1.68)

which shows now that variations of surface tension are sources of a surface force, or,
in other words, of a stress. This stress has the peculiarity of being purely tangential,
which implies that if the surface separating two Newtonian fluids experiences
variations of the surface tension, some flow will appear for no static constraint can
compensate this stress. Such a phenomenon is at the origin of Marangoni–Bénard
convection which is an instability coming from the dependance of � with respect to
temperature (see Sect. 6.3.5 for a detailed presentation).

The foregoing discussion focused on a first effect of surface tension. Indeed,
we restricted the surface variation dS to the local tangent plane of C . This is just
like the case where one pulls on a piece of rubber to increase its size. However,
another simple way of extending the surface exists: this is by pushing it in a direction
perpendicular to its actual surface. An easy way to make this idea quantitative is to
consider a drop of liquid. If its radius varies of dR its surface varies of dS D 8�RdR,
and the energy dE D �8�RdR must be spent. As above, this energy may also be
interpreted as the work of the surface tension F D 8�R� , which has a surface
density

f D 8�R

4�R2
�er D 2�

R
er

It works like a normal stress. Hence, inside a liquid drop at equilibrium, the pressure
is slightly higher than outside the drop since

�Pext D �Pint C 2�

R

” Pint D Pext C 2�

R

as demanded by the continuity of normal stress.
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The foregoing formula is however specific to the sphere. With more general
surfaces, two radii of curvature (R1 and R2) are necessary to describe the surface
variations associated with a normal motion. This leads to the famous Laplace
formula

Pint D Pext C �

�
1

R1
C 1

R2

�
(1.69)

which is demonstrated in Landau and Lifchitz (1971) for instance.
Finally, the two effects of surface tension that we just described can be gathered

in a single formula which states the dynamic boundary condition at a liquid–gas
interface

Œ�liq�n C �

�
1

R1
C 1

R2

�
n C r� D Œ�gas�n (1.70)

Here, n is the normal of the surface that is oriented from the liquid to the gas.
Curvature radii are positive if the centre of curvature is inside the liquid.

We shall come back to surface tension in a few occasions: first, for some aspects
of fluids equilibria, and then when considering the propagation of surface waves.

1.8.4 Initial Conditions

Finally, we should say a few words about the boundary conditions on time, in
other words the initial conditions. The equations of motions are all of first order
in time. This means that the initial state of the fluid completely determines its future
evolution. This is true only in principle. The example of meteorology just shows that
the behaviour of the fluid is unpredictable beyond a few days, essentially because
the initial state is always imperfectly known and imperfections are amplified by the
nonlinearities of the equations of motion.

1.9 More About Rheological Laws: Non-Newtonian Fluids �

1.9.1 The Limits of Newtonian Rheology

We have seen that the (mechanical) perturbations with respect to the thermodynamic
equilibrium could be characterized by the rate-of-strain tensor Œs�. We then admitted
that such perturbations were small enough so as to justify a Taylor expansion of the
stress tensor with respect to the rate of strain. We need now to precise what we mean
by “small”.
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While we introduced Œs�, and more generally @v, we in fact introduced a
macroscopic time scale Tm. Indeed, if L and V are respectively a typical length
scale and a typical velocity scale of the flow, the rate-of-strain tensor introduces

Tm D L

V

as a new time scale since jsijj � V=L. This time scale expresses the rate at which
a deformation is imposed to the fluid. But a material which is moved away its
equilibrium state tends to come back to it on a relaxation time scale Trelax, through
processes of microscopic origin. This time scale is of course specific to the fluid.
The Newtonian behaviour is therefore the asymptotic limit when the relaxation time
scale is vanishing. We now see that a new non-dimensional number has arose with
the ratio of the macroscopic and microscopic time scales. This is known as the
Deborah number:

De D Trelax

Tm

The Newtonian limit is thus De D 0 while the opposite limit De D C1 would
rather describe a solid. Between these two extremes a huge variety of rheological
laws exist, which we shall briefly present now.

1.9.2 The Non-Newtonian Rheological Laws

In the foregoing presentation of the Newtonian rheological law, we show from rather
general arguments that �ij D fij.skl/. Thus doing, we did not take the most general
expression (so as to keep the argument as simple as possible). However, now that
we realized that the small parameter was the relaxation time of the fluid, we may
anticipate that the stress sustained by a fluid element is not only a function of the
actual rate of strain but may also be a function of the strain itself (or the past rate of
strain!); hence one would rather write:

�ij D fij

�
: : : ;

Z t

�1
skldt0; skl;

dskl

dt
; : : :

�
(1.71)

where the dots designate either integral or derivatives of higher orders. Equa-
tion (1.71) is however not fully satisfactory yet. Indeed, the important strain is the
one which the fluid element experiences during its trajectory. We thus see that in
this perspective, the Lagrangian formulation is interesting for the description of
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non-Newtonian fluids. Finally, Œ�� is usually not an explicit function of Œs� and
therefore one should solve something like

G
�
: : : ;

I t

�1
�kldt0; �kl;

D�kl

Dt
; : : :

�
D F

�
: : : ;

I t

�1
skldt0; skl;

Dskl

Dt
; : : :

�

(1.72)

In this horrendous expression,
H t

�1 skldt0 means an integral along the path followed
by the particle. In fact, this equation underlines the theoretical difficulties to be faced
when modelling the motion of non-Newtonian fluids. This is one of the reasons why
experiment is an important tool for the investigation of rheological laws.

In order to get a broad idea of these laws, we shall now review the main ones
which have emerge throughout the exploration of non-Newtonian fluids.

1.9.3 Linear Viscoelasticity

Let us assume that (1.72) is linear with respect to each function and that the
coefficients are constants. We thus write

a0�ij C a1
D�ij

Dt
C � � � C an

Dn�ij

Dtn
D b0sij C � � � C bm

Dmsij

Dtm

which is the general law of linear viscoelasticity. Let us further simplify this relation
by retaining only a0; b0; b1 so that

�ij D 


�
sij C �r

Dsij

Dt

�
(1.73)

When the fluid element faces a constant stress, its deformation is

sij D �ij




�
1 � e�t=�r �

This expression shows that the rate of strain follows the stress with a delay of order
�r . This is Kelvin’s model.10

10In fact such a model rather applies to solids. The rate of strain is then replaced by the strain
itself. Kelvin’s solid does not react instantaneously to a stress and reaches its equilibrium after a
relaxation time �r .
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Another model is Maxwell’s one. In some sense it is the symmetric of Kelvin’s.
The roles of stress and strain are exchanged. One sets b1 D 0 and a1 ¤ 0 or

�ij C �r
D�ij

Dt
D 
sij (1.74)

For a given rate of strain, the stress is delayed of �r . As an example, let us imagine
a situation where the fluid is smoothly flowing. Suddenly, the shear is suppressed.
The stress disappears only progressively according to

�ij D 
sije
�t=�r (1.75)

Typically, a fluid element “remembers” its past deformation and imposes a stress
to its neighbourhood. Such fluids have some “memory”. They are very common.
Honey and jam are typical examples of our everyday life. Everybody has seen the
droplet of honey rising up after the flow being cut. The stress does not vanish
immediately after the flow being stopped and is able to move the fluid up. Such
a behaviour is understood as the results of the intrication of macromolecules
constituting the fluid.

The foregoing model, devised by Maxwell is certainly much simplified and needs
to be complemented by nonlinear effects that we now discuss.

1.9.4 The Nonlinear Effects

Nonlinear effects play a major part in the dynamics of non-Newtonian fluids. To
appreciate their influence, it is useful to consider very simple flows. Let us consider
the basic shear flow

vx D y=T

where T is the time scale imposed by the shear. For a Newtonian fluid the stress-
tensor components would read

�xx D �yy D �zz D �p

�xy D 
=T; �yz D �xz D 0

The normal stress on a surface is the same in every direction (and equal to the
pressure). Non-Newtonian fluids can generate an anisotropy controlled by the
direction of the shear. This anisotropy is defined by two new quantities:

�xx � �yy D N1; �xx � �zz D N2 (1.76)
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As this anisotropy is not depending on the sign of the velocity and therefore on the
sign of sxy, N1 and N2 are even functions of sxy; hence

N1 D ˛1.sxy/
2 C O..sxy/

4/

N2 D ˛2.sxy/
2 C O..sxy/

4/

for low values of the shear. This is a nonlinear effect from the beginning. Experi-
mentally, it turns out that N1 � jN2j and N2 � 0. The raise of such anisotropies
due to shear is also called the Weissenberg effect and may have some spectacular
effects (see the box).

Now, nonlinearities may come simply from the relation

�xy D f .sxy/

In general this relation is written �xy D 
.sxy/sxy so as to emphasize the dependence
of shear viscosity on shear. Fluids for which 
 increases with sxy are called shear-
thickening fluids while fluids with the opposite behaviour are shear-thinning fluids.
The nonlinearity of the relation may be interpreted as the demonstration of a change
in the fluid structure.

In this category, one finds essentially diphasic fluids as for instance fluids
containing solid particles or polymeric solutions. The actual behaviour of the
fluid depends on the volume occupied by each phase. Clearly, such fluids have a
relaxation time which is not macroscopically small.11

1.9.5 Extensional Viscosities

The foregoing discussion may seem a little restrictive. Many flows are not mere
shear flows. Moreover, Newtonian fluid flows may also generate normal stresses.
Let us consider the following two-dimensional flow:

vx D x=T; vy D �y=T; vz D 0 (1.77)

also shown in Fig. 1.4. It is associated with the following stress tensor components:

�xx D 2
=T; �yy D �2
=T; �xy D 0 (1.78)

11Note that in the case of a fluid containing solid particles, the relaxation time is the characteristic
time needed by a solid particle to reach the local fluid velocity when their initial velocities differ.
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Fig. 1.3 The open-syphon
effect due to extension
viscosities in a 0.75 %
aqueous solution of
polyethylene oxide (credit
Barnes et al. 1989)

Within rheology, new viscosities are associated with these types of flows. These are
the extensional viscosities which may have unusual effects (see Fig. 1.3). They are
defined using three types of motions:

• The planar extension is shown in Fig. 1.4. One sets

�xx � �yy D 
P .T /=T

where
P is the planar extensional viscosity. For small values of the rate of strain
(T ! 1), we should recover the Newtonian fluid; therefore, from (1.78)
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Fig. 1.4 Flow corresponding
to a plane extension

Fig. 1.5 Uniaxial extension

y

z

x

lim
T!1
P .T / D 4


• The uniaxial extension (see Fig. 1.5) flow has the following form

vx D x=T; vy D �y=2T; vz D �z=2T

One then sets

�xx � �yy D �xx � �zz D 
E.T /=T (1.79)

In the Newtonian limit, it turns out that 
E D 3
.
• The biaxial extension flow (see Fig. 1.6) is canonically

vx D x=T; vy D y=T; vz D �2z=T
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Fig. 1.6 Biaxial extension z

x

y

and one introduces 
EB such that

�xx � �zz D �yy � �zz D 
EB.T /=T

One may notice that this latter motion can be obtained from the uniaxial
extension flow by changing the sign of the rate of strain. This means that the
two viscosities are related by


EB.T / D 2
E.�T=2/ (1.80)

Non-Newtonian fluids in your kitchen!

We already mention honey and jam as typical common examples for the viscoelastic behaviour.
But there are other examples which are worth mentioning: for instance consider the egg white.
This is certainly a strange fluid. Visco-elasticity may easily be noticed but with slightly unusual
tools one may put into evidence the Weissenberg effect, namely the rise of normal stresses after
imposed shear strain. Just take an electric drill equipped with a rod and let the rod rotating in
the egg white. You will note that instead of being expelled from the rod, like water, this fluid
climbs along the rod. The shear imposed by the differential rotation generates normal stresses
strong enough to overcome gravity.

Corn flour (MaizenaTM) mixed with a small amount of water gives another yet very non-
Newtonian fluid. We suggest the following experiment. Let us mix 15 g of this flour with 2 cm3

of water in a plate. When the mixture is smooth enough, let your finger slowly moving through
this fluid. You will notice that the liquid just flows around it like any other viscous fluid.
However, if you now increase the speed of your finger, you will immediately notice that the
fluid thickens very strongly (be careful of not throwing away the plate!). This fluid may even
be rolled between hands as a solid ball, but it will flow immediately after you cease rolling it.
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1.9.6 The Solid–Fluid Transition

When a solid is stressed by increasing constraints, there is a first threshold beyond
which the deformation is no longer reversible. This threshold marks the limit of
elasticity. It is called the yield stress. With a still increasing stress the plastic
behaviour of the solid leaves the place to a fluid behaviour when a new threshold
(that of plasticity) is overcome.

This schematic behaviour shows up at very high values of the stress for most
of the solids, however there exist some materials where these critical stresses are
very low. For instance, a paint should behave as a fluid so as to be easily spread
but as a solid for very small stresses so as not to drain when spread over a wall.
All such fluids (or solids!) are called Bingham12 fluids (or Bingham plastics). Their
relaxation time is zero or infinite according to the value of the stress with respect to
a critical stress. This is an ideal view of course!

1.10 An Introduction to the Lagrangian Formalism �

We briefly sketched out in Sect. 1.3.2 the idea of the Lagrangian description of
fluid motion. We showed that it consists in describing the set of trajectories of fluid
particles as we would do with a set of point masses. One thus no longer describes a
velocity field but a field of displacements � indexed by the initial position of each
particle. If x is the current position of the particle, we have:

x.q; t/ D q C �.q; t/ (1.81)

The displacement �.q; t/ is a function of the initial position q and time. The
relation (1.81) may be interpreted as a mapping: it makes the correspondence
between the Eulerian coordinate x and the Lagrangian one q. Such a relation
makes sense only if it is one-to-one. Particles cannot collide! This constraint is
expressed by the fact that the Jacobian of the transformation (1.81) cannot vanish.
This quantity is

J D DetŒM � (1.82)

where ŒM � is the matrix

Mij D @xi

@qj
D ıij C @�i

@qj
(1.83)

12Named after Eugen C. Bingham (1878–1945) who proposed the first mathematical description
of these fluids.
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1.10.1 The Equations of Motion

1.10.1.1 The Eulerian and Lagrangian Variations

We first need to introduce the notion of Eulerian and Lagrangian variations of some
quantity � (a scalar, vector, tensor).

The Eulerian variation of a quantity is the one obtained at a fixed Eulerian
coordinate, so at a fixed x. Therefore, this variation is simply

ı� D �.x; t C ıt/� �.x; t/ D @�

@t
ıt

Following the same idea, the Lagrangian variation requires a variation at a fixed q.
We shall denote it ��. It turns out that

�� D �.q; t C ıt/ � �.q; t/ D �.q; t/C � � r� C @�

@t
ıt � �.q; t/

where we introduced � as the displacement of the particle during ıt . The two
variations are related of course:

�� D ı� C � � r� (1.84)

Now if we observe that

��

ıt
D D�

Dt

we understand why the operator D
Dt has also been called the Lagrangian derivative.

Relation (1.84) gives also the variation of a vectorial or tensorial quantity,
however only if the projection basis is constant. In such a case, however, the
formulation is not fully Lagrangian as the basis is not local. A more consistent
formulation includes a frame dragging by the fluid. In this context, the Lagrangian
variation of a vector reads

�vi D ıvi C �j @j vi � vj @j �
i

One subtracts to the variation of each components the variation due to the changing
frame. The quantity �j @j vi �vj @j �i is called the Lie derivative of the velocity. This
formulation allows an expression of the equation of motion in the most complex
situations such as General Relativity or non-Newtonian fluids.

This is of course very specialized matter and we refer the reader to a reference
like Friedman and Schutz (1978) for a discussion of this formalism.
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1.10.1.2 Density Evolution

In the Lagrangian formulation the evolution of density is not controlled by a partial
differential equation. One just needs to compute the Jacobian of the transformation
relating the initial and final positions. Indeed, the conservation of the mass of each
particle implies that

dm D �d3q D �0d3x D �0Jd3q

” �0 D �=J (1.85)

This formula also shows that if the fluid is incompressible then � is a constant and
J D 1: ŒM � is a unitary matrix.

1.10.1.3 Momentum Evolution

Unlike density, the evolution of momentum is not easily obtained from the
Lagrangian formulation. The main difficulty comes from the fact that the force field
which applies to a fluid particle is generally a function of the instantaneous position
of the particle, namely its Eulerian coordinates. A change of coordinates is thus
necessary to express all the terms with the Lagrangian coordinates. For instance, a
perfect fluid in a gravitational potential obeys

�0 @2�
@t2

D �r xP � �0 rx�g (1.86)

where �g is the gravitational potential and r x indicates that derivatives of the
gradient are taken with respect to the Eulerian coordinates x. If we now express
every term with the Lagrangian coordinates q, we need to use the matrix ŒM � to
make the coordinate change. Since rq D ŒM �r x the Lagrangian form of the Euler
equation is

�0 @2�
@t2

D �ŒM ��1rqP � �0 ŒM ��1rq�g (1.87)

This formulation is uneasy to use unless for some specific problems where
simplifications occur.

1.10.2 An Example of the Use of the Lagrangian Formulation

The following example taken from cosmology shows that it is sometimes a wise idea
to use the Lagrangian coordinates. The primordial gas which led to the formation of
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galaxies is usually modeled as a fluid without viscosity and pressure, solely subject
to gravitational forces. Neglecting the expansion of the Universe, the evolution of
the fluid is given by

@2�

@t2
D �ŒM ��1rq�g (1.88)

If we restrict this equation to one dimension, its solution can be derived immediately.
Indeed, in this case particles cannot cross and experience a constant gravitational
pull related to the mass staying on left and right of the particle. Thus, gravitational
acceleration is now a Lagrangian invariant and (1.88) leads to the solution

x D q C u0.q/t C 1

2
g.q/t2 (1.89)

1.11 Exercises

1. Express the vorticity of the velocity field ˝ez � r; what is its peculiarity?
2. What are the components of the rate-of-strain tensor in cartesian coordinates for

the velocity field ˝ez � r? What can be concluded? Same question for v D �r.
Are these flow fields compatible with incompressibility?

3. Show that (1.8) implies r � v D 0. Show the reciprocal (more difficult). How
can we express vr and v� as a function of the stream function  in plane polar
coordinates? Same question for a flow field with two components, vr and vz in
cylindrical coordinates (meridional motion).

4. Retrieve the equation of continuity from (1.10).
5. Show that if all the components of the rate-of-strain tensor are zero then the

velocity field is the sum of a rigid rotation and a translation.
6. Show that the evolution of the kinetic energy of a viscous fluid inside a fixed

volume V, not submitted to any force field, is

dEc
dt

D �
Z
.V /

DdV D �

2

Z
.V /

.cijcij/dV (1.90)

where the second equality is valid only for incompressible fluids.
7. Give a demonstration of the relation (1.80) between uniaxial and biaxial viscosi-

ties.
8. Show the equivalence of the two forms of the viscous force in (1.41) and (1.42).
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Further Reading

The fundamentals of fluid mechanics may be found in many books. The reader
may find an interesting presentation in Batchelor (1967), Faber (1995), Landau and
Lifchitz (1971, 1989), Paterson (1983), Ryhming (1991). For a presentation in the
general framework of the mechanics of continuous media one may consult Sedov
(1975). As for non-Newtonian fluids, the monograph of Barnes et al. (1989) is a
good introduction. The Lagrangian formalism is discussed in papers like Friedman
and Schutz (1978) while the Lie derivative is developed in the book of Schutz
(1980). Some notes about the history of the discovery of heat convection may be
found in Chandrasekhar (1961).
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Chapter 2
The Static of Fluids

The equilibrium of a fluid is certainly the most simple fluid “flow”. However, not
moving is not that easy for a fluid and we shall learn here, among other things, which
conditions need to be satisfied for a fluid to remain in equilibrium.

2.1 The Equations of Static

If we let v D 0, @
@t

D 0 and �ij D �pıij in (1.25) and (1.29), we find that mechanical
and thermal equilibrium are governed by:

� rP C f D 0 (2.1)

r � .�rT /C Q D 0 (2.2)

where f is an applied volumic force field and Q a heat source density. We
immediately note that if f is zero then pressure is uniform.

The first important result from the above equations is that a static solution exists
if, and only if, the external force can be derived from a potential. Thus, we may set
f D �r�ext and solve for the pressure

P C �ext D Cst :

This solution shows that isobars are identical to equipotential surfaces. We now
know that if f is not the gradient of a potential no static solution exists. The fluid
flows.

Equation (2.2) gives the temperature field. If the thermal conductivity is constant
or a smooth function of the space coordinates, this equation has a solution.
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In most cases, f is proportional to the density �. Equations (2.1) and (2.2) need
then to be completed by the equation of state:

P � P.�; T /

The solution of the problem may be quite difficult, all the more that in general

� � �.�; T /

2.2 Equilibrium in a Gravitational Field

The most common problem of fluid statics is certainly the one of a fluid at rest in a
gravitational field. In this case

f D ��r�g D �g

where �g is the gravitational potential. The equation of mechanical equilibrium is
then

rP C �r�g D 0 (2.3)

which implies

r � . 1
�
rP/ D 0 ” r� � rP D 0

This identity shows that isochore surfaces (i.e. surfaces where � is constant) need to
be identical to isobar surfaces for a static solution to exist. This condition leads to

P � P.�/

where we recognize the case of a barotropic fluid.
The foregoing result shows that a fluid in static equilibrium is necessarily

barotropic. Now, we also note that

1

�
rP C r�g D 0

but because P � P.�/, then ��1rP D r R dP=�,1

1We should observe that r R
dP=� D



d
dP

R
dP
�.P /

�
r P D 1

�
r P .
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H) r.
Z

dP

�
C �g/ D 0

”
Z

dP

�
C �g D Cst (2.4)

A relation which determines the isobaric surfaces as a function of equipotentials.

2.2.1 Pascal Theorem

If we consider a fluid of constant density in a uniform gravity field, �g D gz, the
equation of mechanical equilibrium gives the relation

P C �gz D Cst (2.5)

also known as Pascal2 theorem. This relation shows that, in such a case, pressure
only depends on the altitude z. We also see from this result that, in fluids at rest in
a uniform gravity field, the difference of pressure between two points is just �gh,
where h is the difference in their altitude.

A very direct application of this theorem is the barometer. For instance, the
mercury barometer (see Fig. 2.1) is based on the fact that a column of mercury 76 cm
high imposes a pressure difference similar to the atmospheric pressure at sea level.

h

Fig. 2.1 The principle of a mercury barometer: the density of mercury is 1.36�104 kg/m3 so that
�gh equals the atmospheric pressure (101,325 Pa) for h=76 cm. The void left by mercury is filled
with mercury vapour but its pressure at room temperature is only 0.16 Pa, which is negligible
compared to atmospheric pressure

2Blaise Pascal (1623–1662) was a French scientist and writer. As far as Physics is concerned, he is
famous for his work on fluid’s equilibria, de l’Equilibre des liqueurs and de la Pesanteur de l’air
(the weight of air).
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2.2.2 Atmospheres

Planetary atmospheres are a first application of the equilibria of fluids. The static
solution is of course an approximation of an atmosphere. The Earth atmosphere
is well known to be in constant evolution, with winds, clouds, etc. However, its
mean vertical profile is not far from the static equilibrium. Here, we shall restrict
ourselves to two very simple examples of atmosphere models: the isothermal and
the isentropic ones. The latter will be compared to the actual Earth atmosphere.

2.2.2.1 The Isothermal Atmosphere

In some circumstances it is useful to simplify a model of atmosphere by assuming
it being of constant temperature. Using the equation of state of ideal gases P D
R��T , which we combine with (2.4), we find the pressure profile

P.z/ D P0e
�z=z0

where z0 D R�T=g is called the scale height of the atmosphere. This expression
shows that pressure, and hence density, decrease exponentially in an isothermal
atmosphere. From the expression of z0, we also see that the extension of such an
atmosphere increases with temperature.

2.2.2.2 The Isentropic Atmosphere

The Earth atmosphere is far from being isothermal; everyone hiking in mountains
has noticed that air temperature decreases with altitude. This is because the
atmosphere of our planet is not very far from an isentropic state as we shall see
now.

Thermodynamics gives a relation between the differential of enthalpy, entropy
and pressure, namely

dh D Tds C dP=� :

For an isentropic fluid, ds D 0 and thus

dh D dP=�

This relation implies a similar one on all the partial derivatives so that we also have
rh D rP=�. Mechanical equilibrium reads rP D �g, hence

rh D g (2.6)
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Troposphere

Ozone
layer

Fig. 2.2 Temperature and density profiles for the standard Earth atmosphere

This equation shows that the enthalpy gradient is just the local gravity. If the gas is
ideal, then h D cpT and

rT D g
cp

(2.7)

which demonstrates that the temperature gradient is, like gravity, constant and
directed towards the ground. This means that temperature decreases with altitude.

Now, (2.7) can be easily solved since g D �gez. We find

T D T0.1 � z=z0/ (2.8)

where we introduced the ground temperature T0 and, as before, the scale height
which is now z0 D cpT0=g. This quantity is only slightly different from the
isothermal case if we take T D T0. Pressure and density are derived from the
relation P1��T � D Cst valid for an isentropic ideal gas. They read

P D P0.1 � z=z0/
�=.��1/ (2.9)

� D �0.1 � z=z0/
1=.��1/ (2.10)

These expressions show that the isentropic atmosphere has a finite height, given by
z0, unlike the isothermal atmosphere which is infinite. If we take standard values
for the parameters, namely T0 D 289K, g D 9:81m/s2 and cp D 7=2R, we find
z0 ' 30 km. In fact, the atmosphere of the Earth is much more extended because
isentropy is only approached in the troposphere (see Fig. 2.2 and the box on the
standard atmosphere).

The gradient of temperature is found to be �g=cp D �9:8K/km, which
represents a faster decrease than the actual atmosphere, which is close to �6:5K/km.
This comes from the simplifications that we adopted: in our model, the atmosphere
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is dry and in an isentropic state: there is no heat exchange between the fluid
elements. Water vapour and heat exchanges reduce the temperature drop.

The standard atmosphere

The standard atmosphere has been defined for the needs in aeronautics and corresponds
approximatively to the annual mean at a latitude of 40 degrees in North America.
This atmosphere is defined up to an altitude of 86 km and is constructed with the
temperature gradients defined in each layer of the model. Air is assumed to be an
ideal gas with a mole mass of 28,9644 g, and located in a uniform gravity field with
g D 9:80665 m/s2.

Table 2.1 The standard
atmosphere

Layers Altitudes in km rT in K/km

Troposphere 0 – 11 �6.5

11 – 20 0

Stratosphere 20 – 32 C1

32 – 47 C2.8

47 – 51 0

Mesosphere 51 – 71 �2.8

71 – 86 �2.0

On ground (altitude z D 0 m), temperature is 15 ıC (288.15 K) and pressure is 101325 Pa.
Temperature decreases as 6.5 K/km up till 11 km, which is the upper limit of the troposphere.
There, the temperature is 216.65 K (�56.5 ıC). At this altitude the stratosphere begins and the
temperature is first approximatively constant: this is the tropopause. The stratosphere contains
two other layers like the famous ozone layer (20-32 km), and extends up to 47 km. Beyond and
up to 86 km, one finds the mesosphere also divided into three layers (see Table 2.1). We should
note that in the stratosphere, temperature increases and reaches a maximum of �2.5 ıC near
50 km. This heating is essentially due to the absorption of solar UV radiation by the ozone
molecules.

Beyond 86 km, we find the thermosphere where temperature increases again but density is so
low that some part of the gas is always ionized. We touch here the ionosphere which extends
up to 400 km, but this latter boundary is highly variable and rather fuzzy.

2.2.3 A Stratified Liquid Between Two Horizontal Plates

We now consider the equilibrium of a liquid inserted between two horizontal
metallic plates. Such a device is used to study thermal convection in the laboratory
(see Chap. 7). Here we shall describe the situation when the equilibrium of the fluid
is stable and no convection occurs. To simplify we imagine that the two metallic
plates are defined by the planes z D 0 and z D d , infinite horizontally. We also
surmise that the metallic plates are perfect heat conductors and therefore impose the
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temperature to the fluid at these two heights. We denote these temperatures by Tb
and Tt (bottom and top).

Liquids are weakly compressible; we introduced with (1.60) their simplified
equation of state which we now use. Hence,

� D �0.1 � ˛.T � T0//

where ˛ > 0 is the dilation coefficient which we assume to be constant. The thermal
conductivity � of the liquid is also assumed to be constant. With these assumptions
the equations of mechanical and thermal equilibrium read:

8<
:

�rP C �g D 0

r � .�rT / D 0

)

8̂̂
<̂
ˆ̂̂:

�dP

dz
D �g

d2T

dz2
D 0

where g D �gez is the gravity. These equations can be easily solved and give the
temperature, density and pressure profiles:

T .z/ D Tb C .Tt � Tb/z=d

�.z/ D �b.1 � ˛.Tt � Tb/z=d/

P.z/ D Pb � �bgz C �bg˛.Tt � Tb/z2=2d

The remarkable property of this system is that the temperature increase (or
decreases) linearly with the altitude z. The stable situation corresponds to the
increasing temperature. In this case light fluid is above dense fluid. The opposite
case is obtained with a top plate cooler than the bottom one. As we shall see in
Chap. 7, such a situation may be unstable if the temperature drop is strong enough.
In such a case thermal convection takes place.

2.2.4 Rotating Self-gravitating Fluids �

Newton was the first to wonder about the shape of a rotating self-gravitating fluid.
He was indeed interested in the shape of the Earth. This problem has then been
tackled by the most renown mathematicians and physicists like Laplace, Jacobi,
Riemann, Poincaré, Cartan, Chandrasekhar among the most famous. Recently, these
results have been used in the theoretical approach of the dynamics of elliptical
galaxies which may be viewed as a fluid of stars (see Binney and Tremaine, 1987).

Here we shall focus on the simplest of these kinds of problem: that of a fluid of
constant density, self-gravitating and rotating uniformly like a solid body.
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We first assume that the shape of such a system is that of an axisymmetric oblate
ellipsoid and we look for the expression of its flatness as a function of its total mass
M and angular velocity˝ . We shall verify afterwards that our assumption is indeed
consistent with the solution.

It may be shown that the gravitational potential inside an ellipsoid of uniform
density is given by

˚.r; z/ D ��G�.Ia2 �A1s2 � A3z
2/

where a is the equatorial radius and also the semi-major axis of a meridional section.
.s; '; z/ are the cylindrical coordinates. We denote by e the eccentricity of this
meridional section. Constants I; A1 and A3 are defined by

I D 2

p
1 � e2
e

arcsin e

A1 D
p
1 � e2
e2

�
arcsin e

e
�

p
1 � e2

�
; A3 D 2

p
1 � e2

e2

�
1p
1 � e2�arcsin e

e

�

In a rotating frame the momentum equation reads:

�rP � �r˚ � �r�c D 0

where �c D � 1
2
˝2s2 is the centrifugal potential. This equation shows that inside

the body P C�˚ C��c is a constant. Since the pressure is vanishing at the surface,
we have at this place

˚ C �c D Cst ” �G�.A1s
2 C A3z

2/� 1

2
˝2s2 D Cst

which can be transformed into

s2

�G�A3
C z2

�G�A1 �˝2=2
D Cst

This equation describes the surface of the fluid. Since we assumed it to be an
ellipsoid, we write it

s2

a2
C z2

b2
D 1

where a and b are the semi-major and semi-minor axis of the meridional ellipse,
respectively. By simple identification, we get the relations
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�
a2 D Cst � �G�A3
b2 D Cst � .�G�A1 �˝2=2/

(2.11)

Taking the ratio of these quantities (to eliminate the constant) and remembering that
a2 D b2 C c2 in an ellipse, where c is the distance between the center and a focus,
while c D ae, we find

˝2

2�G�
D A1 � A3.1 � e2/ (2.12)

Using the expression of A1 and A3, one may notice that the eccentricity (or the
flatness) of the ellipsoid depends only on the ratio ˝2=�.

The volume of an ellipsoid is 4�
3

abc, where a, b and c are the three semi-major
axis of the ellipses defining this volume. Because density is constant, the volume is
easily related to the mass and (2.12) may be rewritten as:

2˝2a3

3GM
D arcsin e

e3
.3 � 2e2/ � 3

p
1 � e2
e2

(2.13)

This equations gives the eccentricity as a function of rotation for a given density. It
needs a numerical solution. However, by plotting the right-hand side as a function
of e, like in Fig. 2.3, we immediately see that the solution is not unique: For each
ratio ˝2=� two eccentricities are possible. A low one and a high one. The latter is
in fact always that of an unstable configuration.

As Newton did at his time, we now focus on the case of slow rotation and
therefore on small eccentricities. An expansion of the right-hand side of (2.13)
yields the relation

˝2a3

GM
D 4"

5

where we used the flatness instead of the eccentricity. The flatness is defined as

" D a � b
a

D 1 �
p
1 � e2 ' e2=2

Observing that the surface gravity of the sphere is g D GM=a2, we find the
expression of ", namely

" D 5˝2a

4g

Applying this formula to the case of the Earth, where M D 5:974 � 1024 kg, a D
6:378 � 106 m, g D 9:8m/s2 and ˝ D 2�=24h, we obtain
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Fig. 2.3 The curve gives the value of the eccentricity of a MacLaurin ellipsoid when ˝2=�,
is known. The maximum, reached at e D 0:929956, shows that beyond some critical angular
velocity (such that ˝2

2�G�
> 0:2246657) no solution exists. In fact, an analysis of the stability

of the configurations demonstrates that all solutions with e 	 0:9529 are unstable, but if
0:81267 
 e 
 0:9529 stable solutions exist only for an inviscid fluid. For rotations which give an
eccentricity larger than 0.81267, stable solutions for a viscous fluid are triaxial Jacobi ellipsoids

"Earth D 1

232

which is only slightly larger than the actual flatness "Terre D 1=298. The difference
comes from the fact that the Earth is not homogeneous: central parts are much denser
that the outer ones (the core of the Earth is essentially composed of iron, with a
mean density of 10,500 kg/m3 whereas the mantle is made of silicates and has a
mean density of � 	 4;550 kg/m3). This central condensation of the mass makes the
shape of the Earth closer to that of a sphere.

2.3 Some Properties of the Resultant Pressure Force

When fluids are in equilibrium, one of the local body forces is the pressure gradient.
This mathematical expression of the pressure force, which thus derives from a
potential, implies some simple properties when it is integrated over a given volume.
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2.3.1 Archimedes Theorem

Let us consider a solid fully immersed in a fluid that is in equilibrium in a uniform
gravity field g. We wish to compute the resultant of pressure forces exerted on its
surface. By definition this is simply

Fres D �
Z
.S/

PdS

where the differential element dS is oriented towards the exterior of the solid.
To evaluate this integral, we may observe that we can substitute to the solid an
equivalent volume of fluid without changing the equilibrium of the fluid around the
solid. Indeed, there exists an equilibrium distribution of pressure inside the volume
occupied by the solid that perfectly matches the outer distribution of pressures. It
is obtained by a mere continuation of the isobar surfaces inside (S) (see Fig. 2.4).
Then, using the theorem of divergence (see (12.8)), the foregoing surface integral
can be transformed into a volume integral, like

Fres D �
Z
.V /

rP dV

Then, using the equation of mechanical equilibrium (2.3), we obtain

Fres D �g
Z
.V /

�dV D �Mf g

whereMf is the mass of the fluid substituted to the solid. Archimedes theorem can
now be stated:

P = Cst

P = Cst

P = Cst

P = Cst

P = Cst

Fig. 2.4 Two equilibria of the fluid: with and without the solid
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The resultant of pressure forces exerted on a volume V immersed in a fluid at
equilibrium is equal and opposed to the weight of the displaced fluid.

This theorem can be applied in many situations. Note that � need not be constant.
However, we see that it is crucial that the solid is completely surrounded by a fluid
in mechanical equilibrium. This is because pressure needs to be continuous at the
surface of the solid; some example where this is not the case are given in exercises.

2.3.2 The Centre of Buoyancy

A practical problem when considering the resultant of pressure forces is to know
where to apply it. This is by definition the centre of buoyancy. When the buoyancy
force is applied to it, it gives the same torque with respect to any point. In
mathematical words, we need first the expression of the torque of pressure force
with respect to an arbitrary point O :

�
Z
.S/

r � PdS

where r D ��!
OM , M being the current point. Let us play with this integral using

(12.9) and (12.39); we rewrite it as

Z
.V /

r � .P r/dV D
Z
.V /

rP � rdV D
Z
.V /

�g � rdV D g �
Z
.V /

�rdV

where we now see the appearance of a new point Cb, defined as

OCb D 1

Mf

Z
.V /

�rdV

We thus find that
Z
.S/

���!
OM � PdS D ��!

OCb � .�Mf g/ (2.14)

which means that the torque exerted by pressure forces is the same as the one exerted
by the resultant of pressure forces applied to the barycentre of the displaced fluid.
Two remarks are now in order:

• The torque of the buoyancy force is not modified if we apply this force on a point
different than Cb provided that the new point is on a line defined by g and Cb .

• The point where the buoyancy force is applied exist only if the fluid is in
equilibrium and if the pressure varies continuously around the solid (otherwise
(2.14) is not valid).
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Fig. 2.5 Push on a dam

2.3.3 The Total Pressure on a Wall

The resultant pressure force exerted on a wall may easily be computed if one notices
that the projection of the element dS on a plane whose normal is ei , is just dSi D
dS � ei . Hence,

Fi D ei �
Z
.S/

PdS D
Z
.Si /

PdSi

where the integral is computed on the projected surface (Si ). If this surface is a
rectangle of width L and height H , like in Fig. 2.5, and pressure is only a function
of z, we find that

Fx D
Z 0

�H
.Patm � �gz/Ldz D LH .Patm C �gH=2/ D LH P.�H=2/

for an incompressible fluid.

2.4 Equilibria with Surface Tension

In Chap. 1 we pointed out that surface tension is a source of normal stress at the
surface of liquids. This stress is at the origin of some specific figures of equilibrium
that we shall investigate in broad lines (we refer the reader to more specialized work
for a detailed discussion, e.g. de Gennes et al. 2004).
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2.4.1 Some Specific Figures of Equilibrium

2.4.1.1 The Soap Bubble

This is certainly the most simple fluid equilibrium which involves surface tension.
There, only pressure opposes to surface tension. Neglecting any effect of gravity,
the equilibrium of a liquid in the thin film which makes a soap bubble is given by

Pair � 2�

R
D Pliq; Pliq � 2�

R0 D Patm

where Pair is the air pressure inside the bubble. Because the envelope is very thin,
R ' R0 and

Pint 
 Patm C 4�

R
;

a formula which permits the measurement of surface tension of some liquid–gas
interfaces.

2.4.1.2 The Catenoid

Let us imagine now a liquid film where pressure is the same on each side of the film.
In such a situation

�P D 0 D �

�
1

R1
C 1

R2

�
” 1

R1
C 1

R2
D 0

This equation defines a surface called the catenoid which is such that the sum of its
radii of curvature is always zero; one radius is always negative (see Fig. 2.6).

Fig. 2.6 The catenoid
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2.4.2 Equilibrium of Liquid Wetting a Solid

The most spectacular effects of surface tension are certainly those associated with
the wetting of solids. For instance, water raises in glass tube while mercury goes
down (see Fig. 2.7). These different behaviours are the consequence of both the
surface tension and the wetting properties of the solid by the liquid. These properties
may be condensed in a single quantity # , called the wetting or contact angle, in
Young theory.3 His theory assumes that the contact line gas–liquid–solid results
from the equilibrium of three surface tensions: liquid–gas, liquid–solid and solid–
gas. The angle between the liquid–gas and solid–liquid surfaces is called the
contact angle # (see Fig. 2.8). This theory gives a simple approach to very complex
phenomena.

The equilibrium of the contact line yields Young formula:

�`g cos# C �`s D �sg (2.15)

ba

Fig. 2.7 Upward or downward displacement of a liquid due to the joint action of wetting and
surface tension

π − ϑ
π − ϑ

Fig. 2.8 The contact angle is # but for the sake of clarity we show � � #

3Thomas Young (1773–1829) is well-known for his work in interferometry but he also studied the
surface tension of liquids and the wetting of solids in 1805.
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If .�sg � �`s/=�`g ' 1, the contact angle is very small and the liquids wets the
solid; if, on the contrary, .�sg � �`s/=�`g ' �1, the contact angle is close to 180ı
and the liquid only weakly wets the solid. These two extreme cases are shown in
Fig. 2.8. Now, what happens if .�sg � �`s/=�`g > 1? Actually, no equilibrium is
possible and the liquid spreads completely until it makes a very thin film: this is
total wetting.

2.4.2.1 Jurin’s Formula

Many of us have experienced the raise of water in a thin glass tube. This is a joint
effect of surface tension and wetting. The contact angle imposes a negative curvature
to the water’s surface and thus a depression in the water inside the tube. Water thus
raises.

We may easily determine this elevation of the liquid inside the tube if we assume
that the meniscus has the shape of a spherical cap. Let r be the radius of the tube
and # the contact angle, then the radius of the spherical cap is R D r= cos# . We
infer the pressure difference between the liquid and the gas:

PL D PG � 2� cos#

r

and the height of the raise

h D 2� cos#

�gr
: (2.16)

This is Jurin’s formula.4 We should stress here that this formula is an approximation
valid for small values of the radius only. It is not valid for large radii since the
meniscus is no longer spherical.

Jurin’s formula shows that capillary rise is maximum for a total wetting (# D 0)
but may be negative for a pair of liquid–solid such that cos# < 0. For instance,
water, whose surface tension is � D 0:0728 J/m2 at 20 ıC may rise or sink by 15 mm
in a tube of 1 mm radius.

2.5 Exercises

1. About buoyancy

(a) An ice cube floats in a glass of water. When the ice melts, what does the level
of water in the glass do?

4J. Jurin (1684–1750) was an English physician and physicist.
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(b) Same question if the ice cube contains a piece of metal inside (but still floats)?
(c) And with a piece of cork?
(d) Explain why a balloon filled with some light gas (less dense than ambient air)

that starts to rise, will reach a well-defined altitude while a submarine, which
starts to sink, sinks to the bottom of the sea.

(e) In a car, a child holds a balloon filled with helium at the end of a string. When
the car starts, how does the balloon move?

2. We consider a container filled with two immiscible liquids (oil and water for
instance) and in a uniform gravity field.

(a) The two fluids being at rest, how do they settle in the container?
(b) What is the shape of the curve P.z/, the pressure as a function of the altitude

z (z D 0 being the bottom of the container)?
(c) Oil and water densities are respectively �oil D 600 kg/m3 and �water D

1;000 kg/m3. A wooden sphere of density �wood D 900 kg/m3 is left in this
mixture; where is the equilibrium position of the sphere and what is the
fraction of its volume inside water?

3. We consider a U-tube filled with water up to 10 cm from its bottom. The cross
section of the tube is 1 cm2. We then add 2 cm3 of oil in one of the branches of
the tube (�oil=�water D 0:6).

(a) At which height is the free surface of the oil?
(b) At which height is the interface oil–water?
(c) What is the height of water in the other branch?

4. A wooden sphere of density � and radius R is closing a circular hole of radius r
at the bottom of a basin filled with water as shown in the figure below.

z

air

air

H
R

r

water

(a) Determine the force exerted by the sphere on the bottom of the basin.
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(b) Give a numerical value using �water D 1;000 kg/m3, � D 850 kg/m3, H D
0:7m, R D 0:2m, r D 0:1m, gD 9:8m/s2.

(c) If the level of water is tunable, is there a value of this level which is such that
the sphere rises to the surface before its top emerges?

5. We wish to compute the flight altitude of a balloon filled with hydrogen and
left in the atmosphere assumed isentropic. Let Mb be the mass of the balloon
(the nacelle and the envelope), Vb its volume assumed to be fixed and MH its
mass of hydrogen. We recall that �air D �0.1 � z=z0/�=.��1/ for the isentropic
atmosphere

(a) Which condition needs to be verified for the balloon to fly?
(b) If this condition is fulfilled, find the altitude of the flying balloon.

6. We now assume that the envelope of the balloon is opened in its lower part. At
take-off, a fraction of the volume of the envelope is filled with hydrogen which
is in thermal equilibrium with the surrounding air. The volume of the envelope is
assumed constant.

(a) What can we say about the pressure of hydrogen in the balloon?
(b) Show that the mass of hydrogen must exceed some critical value so that the

balloon takes off?
(c) Explain why the balloon reaches a well-defined altitude and give its expres-

sion.

7. Compute the temperature gradient at the equator of Jupiter assuming that
its atmosphere is isentropic. The chemical composition is 85 % of molecular
hydrogen and 15 % of helium. Jupiter’s mass is 1:9�1027 kg, its radius 71,492 km
and its rotation period 9.84 h.

8. A funnel is made of a tube with a very small cross section connected to a cone of
aperture angle ˛. The funnel is put on a plane and filled with a liquid of density
� as shown below.

g

h

α
H
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(a) Compute the vertical component of the resultant of pressure forces as a
function of ˛, of the height h of the liquid inside the funnel, H , � and g
the gravity.

(b) We suppose the funnel is filled up to heightH ; show that the funnel must have
a minimum massMe to be equilibrium. Express this mass as a function of the
mass of the liquid Ml . What does happen if the mass of the fluid is larger?

9. A polytropic model for the Sun

(a) We assume that a star is a ball of gas in hydrostatic equilibrium. We recall that
pressure P.r/ and gravity g.r/ at a distance r from the centre verify:

g.r/ D GM.r/

r2
and

dP

dr
D ��g

where �.r/ is the density at r andM.r/ is the mass inside the sphere of radius
r . We also assume that the gas verifies a polytropic equation of state, namely

P D K�1C1=n

where K is a constant and n is the polytropic index of the gas. Setting � D
�c�

n, with �c being the central density and � a non-dimensional function that
varies between 0 (at the surface) and 1 at the centre, show that � obeys the
following differential equation

1

�2
d

d�

�
�2
d�

d�

�
C �n D 0 (2.17)

called Emden equation, where � D r=r0 with

r0 D
s
.nC 1/K

4�G�
1�1=n
c

(b) Show that pressure may be written

P D Pc�
n

(c) Show that if mass and radius of the star are known then we may deduce its
central density with

�c D � �1

3� 0
1

h�i

where �1 is the first root of function � and � 0
1 is the value of the derivative of

this function at �1. h�i is the mean density of the star (its mass divided by its
volume).
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(d) Show that central pressure reads

Pc D 4�G�2c r
2
0

nC 1

(e) We now model the Sun by a polytrope of index n D 3:37. The numerical
solution of Emden equation gives �1 D 8:686 and � �1

3� 0

1
D 113:77. Since the

mass of the Sun is 2�1030 kg and its radius is 696�106 m, deduce the central
density and pressure of the Sun according to this model.

(f) To derive the central temperature, we now assume that the solar plasma is
an ideal gas. This gas is a mixture of protons, helium ions and electrons
(other elements are neglected). We suppose that the mass fraction of helium
is Y D 28 %. Show that the mole mass of this mixture is

M D 4

8 � 5Y
grams per mole. Deduce the central temperature of the Sun according to that
model. Compare with the values obtained from more realistic models: �c D
1:62 105 kg/m3, Pc D 2:5 1016 Pa, Tc D 1:57 107 K.

Further Reading

For a deeper insight in the problems of wetting and capillarity, we refer the reader
to de Gennes et al. (2004).
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Chapter 3
Flows of Perfect Fluids

3.1 Equations of Motions

In the first chapter we introduced the perfect fluid as a fluid that does not conduct
heat and for which the fluid elements interact only through pressure. We then derived
the equations of motion of such a fluid:

@�

@t
C r � �v D 0 (1.16)

�
Dv
Dt

D �rP (1.33)

Ds

Dt
D 0 (3.1)

These equations express mass, momentum and energy conservation, respectively.
The momentum equation is also called Euler’s equation and the third equation shows
that the motion of fluid particles takes place at constant entropy. In other words
a particle of perfect fluid only sustains reversible adiabatic transformations in the
course of its motion.1

1On condition, of course, that the functions are continuous, i.e. that the fluid particles do not cross
a shock wave.
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3.1.1 Other Forms of Euler’s Equation

Euler’s equation (1.33) can be rewritten in several forms. Firstly, using the vector
relation .v � r /v D .r � v/ � v C r 1

2
v 2, we obtain Lamb’s form:

@v
@t

D v � .r � v/� 1

�
rP � r 1

2
v2 (3.2)

But Crocco’s form is often more interesting. Let us introduce the enthalpy h, the
total derivative of which is connected to that of pressure and entropy by

dh D Tds C 1

�
dP

This expression relates the differential forms of the three functions (pressure,
enthalpy and entropy). It also relates the partial derivatives and therefore the
gradients. Thus we can write:

rh D Trs C 1

�
rP

which leads to Crocco’s equation:

@v
@t

D v � r � v C Trs � r .hC 1

2
v2/ (3.3)

The quantity hC 1
2
v2 is sometimes called the total enthalpy.

3.2 Some Properties of Perfect Fluid Motions

The form of equations (3.1) and (3.3) confers certain conservation properties on the
motion of a perfect fluid and we shall study the simplest aspects of these. These
properties are summarized by two theorems (Bernoulli and Kelvin) which express
the conservation of mechanical energy and of angular momentum.

3.2.1 Bernoulli’s Theorem

3.2.1.1 Statement and Proof

Let us consider a steady flow. It is governed by the equations:

r � �v D 0 (3.4)
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v � .r � v/C Trs � r.hC 1

2
v2/ D 0 (3.5)

v � rs D 0 (3.6)

where we dismissed all the time derivatives as required by steadiness. The last
equation shows that entropy is constant along the streamlines. If we now project
the momentum equation (3.5) onto the vector v, we obtain

v � r
�
1

2
v2 C h

�
D 0

so that

1

2
v2 C h D Cst (3.7)

along a streamline.
This result constitutes Bernoulli’s Theorem in its fundamental form. It may be

generalized to the case where the fluid flow is driven by a potential force f D ��r�.
In this case

1

2
v2 C hC � D Cst (3.8)

along a streamline. This theorem simply expresses the conservation of mechanical
energy per unit mass along a streamline. We notice that in this expression, enthalpy
plays the role of a potential energy. If the fluid is incompressible (3.8) leads to

1

2
�v2 C P C �� D Cst (3.9)

and pressure plays the role of a potential. The quantity 1
2
�v2 is called the dynamic

pressure.
If the fluid is an ideal gas,

h D �

� � 1
P

�

and (3.8) now reads

1

2
v2 C �

� � 1
P

�
C � D Cst (3.10)

also called Saint-Venant’s relation.
Finally, it should be noted that the constant in (3.7) or (3.8) is specific to each

streamline (see exercises).
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3.2.2 The Pressure Field

The steady Euler’s equation

�v � rv D �rP (3.11)

leads to an interesting property of the pressure field associated with steady flows.
Let us consider a streamline. We denote by s the curvilinear abscissa of a point on
this curve and by es the tangent vector in s. We immediately see that v �r � v@=@s,
therefore

.v � r /v D v
@.ves/
@s

D v
@v

@s
es C v2

@es
@s

: (3.12)

Now

@es
@s

D n=Rs;

where Rs is the radius of curvature of the streamline at s and n a unit vector
perpendicular to es (see Sect. 12.3). If one projects (3.11) on es , one obtains

@P

@s
D �� @

@s

�
v2

2

�

which leads to Bernoulli’s theorem as we have seen above. However, if we project
(3.11) along n, we have

@P

@n
D �v2

Rs
(3.13)

where n is the coordinate along n. This equation expresses the equilibrium that

exists between the local centrifugal force �v2

Rs
and the normal component of the

pressure gradient when the flow is steady. This equation also shows that the pressure
does not vary in the direction perpendicular to a streamline if the streamline is
straight (infinite radius of curvature).

Finally, we note that the relation (3.13) also applies to an unsteady flow because
the term @v

@t
does not have a component along n; in this case it is necessary to replace

the streamlines by the trajectories of fluid particles and Rs is the radius of curvature
of such a trajectory.
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3.2.3 Two Examples Using Bernoulli’s Theorem

Waterfalls have been used for a very long time as a source of energy. In this example
we calculate the maximum power available from a waterfall of height H having a
volume flux q. We assume that water is an incompressible perfect fluid and that the
flow is steady. Along a streamline we have, after Bernoulli’s theorem:

1

2
v2 C P

�
C gz D Cst (3.14)

We suppose that the origin of z is at the foot of the waterfall and that the water
arrives at the entrance of the fall with a vanishing velocity (originating in a lake, for
example).

By applying (3.14) along a streamline lying on the surface of the water, one can
obtain the velocity of water at the foot of the waterfall:

1

2
v2 C Patm

�
C 0 D 0C Patm

�
C gH

where Patm is the atmospheric pressure. We get

v D p
2gH (3.15)

also called Torricelli’s law. This relation shows that the velocity at the foot of the
waterfall is that of a free particle falling from a heightH . The available power here
is simply the flux of kinetic energy:

Pu D q � 1

2
�v2 D q�gH

For a height H of 10 m and a flow rate q of 10 m3/s, the available power is around
106 W. This is of course a theoretical limit and the study of a realistic case must take
losses into account. Nevertheless the performance of hydraulic installations is high
(actually higher than 90 %) and the preceding calculation provides a good order of
magnitude.

Experts in hydraulics often rewrite (3.14) in the form

v2

2g
C P

�g
C z D H I (3.16)

In this expression where the terms are all homogeneous to a length, permitting
an immediate graphical representation (Fig. 3.1), the constant H represents the
hydraulic head or load and

h D P

�g
C z
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A

BzA

zB

V 2
A/2g

V 2
B/2g

PA
ρg PB

ρg

piezometric line

piezometric tube

energy grade line

A

B

B’

h

a b

Fig. 3.1 (a) A representation of the hydraulic grade line in a pipe for a perfect fluid. With a real
fluid the energy grade line would be inclined towards the downstream side since HA > HB .
(b) The Pitot tube

the piezometric height.
In a real fluid, the head (or energy) line and the piezometric (or hydraulic grade)

line are inclined towards the downstream side and the difference

HA �HB D
�

v2A
2g

C PA

�g
C zA

�
�
�

v2B
2g

C PB

�g
C zB

�

on the load line represents the head loss between points A and B . The head loss
measures the loss of mechanical energy of the flow.

Finally, we note that the power lost (or received) by a flow between two points is
proportional to the product of the mass flux and the difference of load�H between
the two points.

Another simple application of Bernoulli’s Theorem is that of an apparatus called
the Pitot tube,2 permitting the measurement of velocity within a flow. This apparatus
is sketched out in Fig. 3.1b. The principle of the device consists in estimating the
difference in pressure between the stagnation point A and a point B along the tube.
One admits that the holes for measuring pressure do not disturb the flow, and that
the difference of elevation of the measurement points is negligible. If we consider
the streamline ending in A, Bernoulli’s theorem says that

PA D P1 C 1

2
�v2

where P1 is the pressure at infinity. The pressure in B is however the same as P1.
We may see that by considering the streamline that passes through B: noting that the
velocity in B is the same as at infinity (the fluid is inviscid), Bernoulli’s theorem says

2H. Pitot (1695–1771) was a French physicist who invented this device around 1732 in order to
measure the velocity of water in a river or the speed of a ship.
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that pressure must also be the same as at infinity. Hence PB D P1. However, we
may also note that pressure in B is also the same as the pressure along the straight
line BB’ because all the streamlines are straight lines there (see Sect. 3.2.2). Hence,
far enough from the Pitot tube, we find streamlines along which the pressure is
uniform (like the velocity) and equal to P1. This line of argument is interesting
because it applies to real fluids also, and shows that the Pitot tube may measure the
velocity even if a slight viscosity of the fluid modifies the flow in the neighbourhood
of the solid, as it actually does. So we can write

PA D PB C 1

2
�v2 and v D

p
2.PA � PB/=�

If the difference in pressure is measured by a U-shaped tube,PA�PB D .�`��f /gh
where �` and �f are respectively the densities of the liquid and the fluid that one
supposes obviously non-mixable (for example, air–water, water–mercury, etc.).

3.2.4 Kelvin’s Theorem

3.2.4.1 Statement

Let .C / be a contour moving with the fluid not intersecting any surface of
discontinuity: if the fluid is barotropic and subject solely to forces deriving from
a potential, then the circulation of the velocity along this curve is constant.

3.2.4.2 Proof

The circulation � along a contour (C) moving with the fluid (i.e. made of fluid
particles, see Fig. 3.2) is defined as

� .t/ D
I
C.t/

v.x; t/ � d l

Fig. 3.2 Example of a
contour moving with the fluid

(C) at t

(C) at t+dt

dl

dl
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We calculate the derivative of this quantity with respect to time with the help of the
relation (1.12) :

d�

dt
D
I
C.t/

�
Dvi
Dt

dli C vi @j vidlj

�

D
I
C.t/

Dvi
Dt

dli C
I
C.t/

r.v2=2/ � d l

whence

d�

dt
D
I
C.t/

Dv
Dt

� d l (3.17)

because the second integral always vanishes. We thus obtain

d�

dt
D �

I
C.t/

�
1

�
rP C r�

�
� d l D �

I
C.t/

�
1

�
rP

�
� d l

Since the fluid is barotropic P � P.�/ and

1

�
rP D r

Z
dP

�

where h0 D R
dP
�

is a quantity that we can identify as the specific enthalpy if the
fluid is isentropic. Finally

d�

dt
D �

I
C.t/

rh0 � d l D 0

and thus

� .t/ D
I
C.t/

v.x; t/ � d l D Cst (3.18)

3.2.4.3 Interpretation

Following Stokes’ theorem, this result (3.18) can also be written as

Z
.S.t/

r � v � dS D Cst (3.19)

where S.t/ is the surface delineated by the contourC.t/. The flux of vorticity across
a surface moving with the fluid is constant.
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If we consider an infinitesimal cylinder of fluid based on a contour C.t/, the
angular momentum of this fluid particle is

L D I.
1

2
r � v/ / mS.

1

2
r � v/

where we have used the fact that the moment of inertia I is proportional to the base
S of the cylinder and that 1

2
r�v is nothing but the local rotation of the fluid element

(see Chap. 1). Kelvin’s theorem (3.18) implies the constancy of S 1
2
r � v and thus

the constancy of the angular momentum L of the fluid particle of mass m.
Kelvin’s theorem shows that in the motion of an inviscid fluid, the angular

momentum of the fluid particles is conserved.

3.2.5 Influence of Compressibility

Bernoulli’s theorem also allows the determination of the circumstances in which the
compressibility of a gas has either a negligible or important role.

To see this, we need considering the flow of an ideal gas and Saint-Venant’s
relation. We apply it to a streamline that connects points far upstream where the
velocity of the fluid is V1, the pressure P1 and the density �1, to a stagnation
point on a solid surface where the pressure and density are respectively Pm and �m.
Then

1

2
v21 C �

� � 1
P1
�1

D �

� � 1

Pm

�m
(3.20)

We shall see in Chap. 5 that �P

�
is simply the square of the local sound speed.

The ideal gas flowing as a perfect fluid, fluid elements evolve isentropically and
therefore P / �� . From this relation and (3.20), we deduce the expression of the
density at the stagnation point as a function of that far upstream. One obtains

�m D �1
�
1C

�
� � 1
2

�
v21
c21

� 1
��1

(3.21)

This expression shows that, at low velocity, the changes in density induced by the
flow are of the order of v21=c21, which is the Mach number of the flow squared.
From this particular case, we actually obtain a general result, namely that one can
consider a fluid as incompressible as long as its velocity is very small in comparison
with the sound speed. For example, the air flow around a car moving at 100 km/h
causes variations of density less than a percent, which are therefore negligible in
first approximation.
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3.3 Irrotational Flows

3.3.1 Definition and Basic Properties

A flow is called irrotational if

r � v D 0

or, equivalently, if there exists a function ˚ such that

v D r˚:

This type of flow is also called a potential flow and ˚ is the velocity potential.
Let us consider the case of irrotational flows of perfect fluids, whose motion

is driven by a force field derived from a potential �ext. We look for the equations
satisfied by the velocity potential˚ . Euler’s equation is transformed in the following
way:

�
Dv
Dt

D �rP � �r�ext

” r
�
@˚

@t
C 1

2
v2
�

D �1
�
rP � r�ext

We note that in order for this equation to make sense we require that

r � 1

�
rP D 0 ” r� � rP D 0;

namely that P � P.�/, as has been seen in the previous chapter. So we can
introduce h0 such that rh0 D 1

�
rP . Hence,

r
�
@˚

@t
C 1

2
v2 C h0 C �ext

�
D 0

or

@˚

@t
C 1

2
v2 C h0 C �ext D Cst (3.22)

We note the similarity of this expression with that obtained for Bernoulli’s
Theorem, but we must pay attention to the fact that in this new equation the
constant is the same in all the volume occupied by the fluid and thus identical for
all streamlines. Moreover, the expression is also valid for unsteady flows.
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To (3.22), we add the equation of continuity

@�

@t
C r � .�r˚/ D 0

This last equation takes a special form for incompressible fluids where � D Cst,
since

�˚ D 0 (3.23)

is simply Laplace’s equation.
We observe that the potential ˚ is defined to within a function of time: since ˚

and ˚ C f .t/ give the same velocity field.

3.3.2 Role of Topology for an Irrotational Flow

Topology plays a very important role in irrotational flows. Let us first take an
illustrative example. We consider a fluid which occupies all space except a cylinder
of infinite length with a radius a centered on the axisOz. The motion of fluid around
the cylinder is given by its velocity field

v D � � a2es
s

D ˝a2

s
e'

which is derived from the potential ˚ D a2˝' (s; '; z are the cylindrical
coordinates). One will note that this potential possesses a special property: it is not
single valued; at a given point, ' can take an infinite number of values like 'C2n� .
The immediate consequence of this property is that the circulation � along a closed
curve can take many values depending on the chosen curve. In fact, if the curve
does not enclose the cylinder � D 0. If, on the other hand, it encloses it n times
� D 2n�˝ ¤ 0.

This example illustrates the effect of topology on circulation. The space occupied
by the fluid here is doubly connected: there exist two irreducible paths3 to connect
two points in this space.

Double connectivity implies that the solutions to Laplace’s equation are entirely
defined only when the circulation around the regions not belonging to the fluid space
is given.

3That are paths which cannot be reduced from one to the other by a continuous deformation within
the space occupied by the fluid or, equivalently, the surface bounded by the two paths does not
belong entirely to this space.
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a b

Fig. 3.3 Examples of doubly connected domains: in two-dimensions (a) any obstacle creates a
doubly connected region; in three-dimensions a toroid (b) or an obstacle which is infinite in one
dimension implies double connectivity

Two examples of doubly connected spaces are shown in Fig. 3.3. One may
note that the presence of an obstacle in a two-dimensional flow renders the space
occupied by the fluid doubly connected.

3.3.3 Lagrange’s Theorem

If the flow of a barotropic fluid subjected to forces deriving from a potential is
irrotational at time t0 then it is (irrotational) at all other times.

In order to prove this theorem we shall suppose the volume occupied by the fluid
to be simply connected. According to Kelvin’s theorem,

I
C.t/

v � d l D Cst

at any time. But at t0

8C
I
C

v � d l D
I
C

r˚ � d l D 0

The equality is true for any curve (C ) and, from Kelvin’s theorem, at all time t .
We have therefore I

C

v � d l D
ZZ

S

r � v � dS D 0

for any surface S and any time t , thus

” r � v D 0; 8t or v D r˚; 8t
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This result is important because it justifies the irrotationality of a large number
of flows: in particular if an inviscid fluid is initially at rest and is set in motion by
the action of a force deriving from a potential, one can state that the flow will be
irrotational because v D 0 is an irrotational flow.

3.3.4 Theorem of Minimum Kinetic Energy

For an incompressible flow of a perfect fluid, the irrotational solution is unique
and is that of minimum kinetic energy.

The uniqueness (to within an additive constant) of the solution follows from
Laplace’s equation satisfied by the potential ˚ . The solution is unique when the
boundary conditions are specified. As for Lagrange’s theorem, we consider only the
case where the fluid occupies a simply connected space. If n is the outward normal
at the surface bounding the fluid, the flux of v across the surface is zero and the
potential therefore satisfies

n � r˚ D 0

on it. This boundary condition is called Neumann’s boundary condition. Together
with Laplace’s equation it defines a unique solution for v (for ˚ the solution is
defined up to an additive constant). We now show that this solution is that of
minimum energy. For this purpose we consider an irrotational flow v D r˚ such
that r � v D 0 as well as another flow v0 such that r � v0 D 0 but which is not
necessarily potential. The kinetic energies associated with each of these flows are:

Ec D 1

2
�

Z
V

v2dV and E 0
c D 1

2
�

Z
V

v02dV

Their difference is

E 0
c � Ec D 1

2
�

Z
V

.v02 � v2/dV

however

v02 � v2 D .v0 � v/2 C 2v � .v0 � v/

therefore

E 0
c � Ec D 1

2
�

Z
V

.v0 � v/2dV C �

Z
V

v � .v0 � v/dV
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but
Z
V

v�.v0�v/dV D
Z
V

.v0�v/�r˚dV D
Z
V

r �.˚.v0�v//dV D
Z
.S/

˚.v0�v/�dS D 0

because v and v0 both satisfy the boundary condition v � n D v0 � n D 0. We find the
result

E 0
c �Ec D 1

2
�

Z
V

.v0 � v/2dV � 0

This theorem is also due to Kelvin.

3.3.5 Electrostatic Analogy

Laplace’s equation is encountered in numerous problems in Physics, in particular in
electrostatics where it gives the variations of electrostatic potential in the absence of
a charge density. Nevertheless, it is not the electric field that one uses as an analog
of the velocity field, but rather a quantity which is proportional to it, like the current
density j. Ohm’s law states that in a conductive medium, j D �E, � being the
conductivity assumed constant. In making this analogy we actually substitute the
flow of fluid for a flow of charges. The “obstacles” are thus the insulated regions.
The situation is easily summed up in the following table:

Fields v

Equations
r � v D 0 ” v D r˚
r � v D 0

�˚ D 0

Boundary
conditions

v D 0 at infinity
v � n D 0 at the surface
of the obstacle

j D �E

r � E D 0 ” j D r�j
r � E D 0

��j D 0

j D 0 at infinity
j � n D 0 at the surface of the
insulated region

This is the direct analogy. We shall later encounter the inverse analogy where the
analog of electrostatic potential is the stream function.
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3.3.6 Plane Irrotational Flow of an Incompressible Fluid

3.3.6.1 Equation for the Stream Function

We have seen in Sect. 1.3.7 that a two-dimensional flow can be described with the
help of a scalar function called the stream function . If the velocity is derived from
a potential then  also satisfies Laplace’s equation. Indeed, r � v D 0 implies that

@vy
@x

� @vx
@y

D 0

while vx D @ =@y and vy D �@ =@x, therefore

� D 0 (3.24)

It may then be shown (see exercise) that the streamlines ( D Cst) are orthogonal
to the “equipotentials of velocity” (� D Cst).

3.3.6.2 Inverse Analogy

In view of the preceding relation we can make an analogy between the electrostatic
potential and the stream function since they both satisfy the same equation. The
two functions will be identical if they satisfy the same boundary conditions. For
the velocity, these are simply  D Cst along the boundaries and thus for the
electrostatic potential we will require that �e D Cst along the bodies and these
will be identified to perfect conductors (this is indeed the inverse of the preceding
analogy!).

Fields
v
 

Equations

r � v D 0; v D r � . ez/

+
� D 0

*
r � v D 0; v D r˚

Boundary
conditions

v D 0 at infinity
 D Cst on an obstacle

E � ez

�e

r � .E � ez/ D 0
*
��e D 0

*
r � E D 0; E D r�e

E D 0 at infinity
�e D Cst on a conductor
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3.3.6.3 The Complex Potential

The existence of two harmonic functions4 describing the flow allows the study
of two-dimensional irrotational incompressible flows in a very thorough manner,
thanks to the complex potential. We give here only the broad lines of this approach
and refer the reader to the classical works for more details (see for example
Batchelor 1967).

We thus introduce the complex function

f D � C i (3.25)

called the complex potential. Besides Laplace’s equation, this function satisfies

@f

@x
C i

@f

@y
D 0 (3.26)

because
8̂
ˆ̂̂<
ˆ̂̂̂:

@�

@x
D @ 

@y
D vx

@�

@y
D �@ 

@x
D vy

Equation (3.26) is also called Cauchy’s conditions. It implies that f � f .x C iy/,
thus f is only a function of the complex variable z D x C iy.

We then introduce the complex velocity defined by

w D df

dz
D @f

@x
D vx � ivy

The interest in introducing the complex potential rests essentially in the ability to use
conformal transformation. This type of transformation is defined by an analytical
function G with non-zero derivative in a domain of the complex plane, which
associates with each point z of the first domain a point z0 of the image domain,
such that

z0 D G.z/

This transformation is called conformal because it conserves angles.
Let us seek the equation for the streamlines (the curves  D Cst) in the

image plane.  D Cst is the equation of streamlines in the original plane, thus

4A harmonic function is a solution of Laplace’s equation.
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 .G�1.z0// D Cst is the equation in the image plane.  ı G�1 is the new stream
function. More generally, if F.z/ is the complex potential of the flow F ı G�1 is
the complex potential in the image plane. We derive from this, the new complex
velocity:

w0 D dF ıG�1

dz0 D w.z/

G0.z/
(3.27)

In order to illustrate the power of this transformation, we shall use the example of
Joukovski’s transformation, namely

G.z0/ D z0 CR2=z0 (3.28)

This function is indeed analytic throughout the plane except at the origin.
We now consider a uniform flow past a flat plate represented by a segment of

length 4R on the x axis. The velocity is simply v D V0ex and the associated complex
potential is

f .z/ D V0z

Let z be the transform of a system of coordinates z0 by the conformal transforma-
tion G, so that z D G.z0/. Substituting this in the above equation we have

f .G.z0// D V0G.z
0/

a new complex potential which is f ıG; but since f is simply the identity (to within
a multiplicative constant), G is in the new potential.

In choosing the Joukovsky’s transformation for G, we can seek new streamlines
and, in particular, the new shape of the obstacle in the .x0; y0/ plane. For that purpose
it suffices to take the imaginary part of (3.28)

 D Im.z0 CR2=z0/ D Im.r 0ei� 0 CR2=r 0e�i� 0

/ D r 02 � R2

r 0 sin � 0

which gives the new streamlines. Among them we find those bounding the obstacle:
here it consists of the circle r 0 D R, the inverse transform of the line Im.z/ D 0.

The inverse of Joukovski’s transformation therefore takes us from the (trivial)
flow past a flat plate to that past a circle (less obvious). Thus, we determine very
easily the flow past more or less complicated forms. For example, starting from the
flow past a circle, by shifting a direct Joukovsky transformation we obtain the flow
past a wing profile, also called a Joukovsky profile (see Fig. 3.4).
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Fig. 3.4 Illustration of possible transformations of a flow past a flat plate. In this example we have
first applied an inverse Joukovski transformation which has produced the flow past a circle; then,
by application of the slightly shifted Joukovski transformation (z0 D z C c C .1 C c/2=.z C c/)
one obtains the flow past a wing profile (note that if c D 0 the flow past the flat plate is recovered;
here c D �0:17)

3.3.7 Forces Exerted by a Perfect Fluid

3.3.7.1 d’Alembert’s Paradox

Statement:

The steady irrotational flow of an inviscid incompressible fluid around a solid body
does not exert any force on it.

Proof:

We assume that the volume occupied by the fluid is simply connected. The solid is
supposed to have a constant velocity Vs . The potential satisfies Laplace’s equation
and the boundary conditions

n � r� D n � Vs on S (3.29)

� D O.1=r2/ if r ! 1

The second boundary condition results from the properties of the solutions of
Laplace’s equation (see the mathematical supplement). The force exerted on the
solid is just the sum of pressure forces

F D �
Z
.S/

PdS
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Using (3.22) we write

P D P1 � 1

2
�v2 � �

@�

@t

where P1 is the pressure at infinity assumed constant. We calculate first of all the
term @�=@t while remarking that in a region attached to the solid � � �.x0; y0; z0/
where

x0 D x � Vst; y0 D y; z0 D z

@�

@t
D �Vs @�

@x
D �Vs � r�

thus

F D 1

2
�

Z
.S/

v2dS � �

Z
.S/

.Vs � v/dS (3.30)

Now we examine each component of each of these integrals. In particular,

Z
.S/

v2dSi D
Z
.S[S

1
/

v2dSi

where we have introduced a surface S1 at infinity which closes the volume of fluid.
This is possible and interesting since limr!1 v D 0. We have

1

2

Z
.S[S

1
/

v2dSi D
Z
.V /

1

2
@iv

2dV D
Z
.V /

.v � r � v C v � rv/i dV D
Z
.V /

vj @j vidV

D
Z
.V /

@j .vj vi /dV D
Z
.S[S

1
/

vivj dSj

D
Z
.S/

vivj dSj D
Z
.S/

vi VsjdSj D Vsj

Z
.S/

vidSj

where we used the boundary conditions (3.29). The second integral in (3.30) also
reads

Vsj

Z
.S/

vj dSi :
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Finally

Fi D ��Vsj

�Z
.S/

.vjdSi � vidSj /

�
D ��Vsj

�Z
.V /

.@ivj � @j vi /dV

�

D ��Vsj

�Z
.V /

.@i@j � � @j @i�/dV

�
D 0

whence the result.
This shows that a solid body moving in an inviscid fluid is not subjected to any

force from the fluid if its motion is uniform. Viscosity is therefore paradoxically an
essential element to insure, via the circulation that it induces, the lift of a wing, for
example.

3.3.7.2 Case Where the Obstacle is Accelerated

The case of an accelerated body is quite different from the foregoing one and is
worth discussing. In a referential attached to the accelerating solid, the flow is now
unsteady and subject to an entrainment inertial force but the velocity potential still
satisfies �˚ D 0. Therefore the dependence of ˚ with respect to time comes from
the boundary conditions at infinity where the velocity will be supposedly uniform
and of the form �U.t/ez. One can show from this that the potential of the velocities
can be written ˚ D U.t/f .r/. The force which is applied to the solid is still the
result of the pressure forces, that is

F D �
Z
.S/

PdS

Noting that the entrainment inertial force (��ae D ��r�e) is derived from a
potential, the momentum equation (3.22) reads

@˚

@t
C 1

2
v2 C P

�
C �e D Cst

which leads to the following expression for the force exerted on the solid:

F D
Z
.S/

�
��e C �

@˚

@t

�
dS C

Z
.S/

1

2
�v2dS (3.31)

where we have separated the term of kinetic energy since it is zero as we shall see
now. Indeed,

Z
.S/

v2dS D
Z
.S[S

1
/

v2dS
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because in enclosing the volume by a sphere of infinite radius, the integral remains
unchanged since v D U.t/ez C O.1=r3/. From the calculations of the preceding
paragraph, the foregoing integral also reads

Z
.S[S

1
/

v v � dS

This integral is zero because of the boundary conditions on the solid and because of
the form of the velocity at infinity. Finally, the expression for the force is

F D �

Z
.S/

�
@˚

@t
C �e

�
dS

so that

F D � PU.t/
Z
.S/

.f C z/dS (3.32)

where we have made use of �e D PU .t/z assuming a motion along the z-axis.
This integral is non-zero in general. This expression therefore shows that a solid

having accelerated motion amidst the fluid, even if inviscid, sustains a force from the
fluid. This force is at the origin of all swimming strokes: propulsion in the water is,
in fact, efficient only if the solid accelerates with respect to the fluid. For this reason
the motion of the fins of a fish is in perpetual acceleration (oscillating motion).

As an example we may calculate the force sustained by a sphere accelerated
within of a perfect fluid with constant density. To determine the function f in (3.32)
we must solve Laplace’s equation in this particular case. In three dimensions and in
this geometry we use the expansion of the solution in Legendre’s polynomials.

˚ D �U.t/r cos � C
C1X
`D0

A`.t/

r`C1
P`.cos �/ (3.33)

where we have taken into account the boundary condition at infinity and the fact that
the flow is axisymmetric with respect to the z-axis. The boundary conditions on the
sphere, assumed to have radius R, give the functionsA`.t/. At r D R, v � er D 0 so
that

�
@˚

@r

�
rDR

D 0 D �U.t/ cos � C
C1X
`D0

� .`C 1/A`.t/

R`C2
P`.cos �/
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This expression shows5 that the A` are all zero except A1, and

A1.t/ D �R3U.t/=2 (3.34)

Finally, from (3.33)

˚.r; �; t/ D U.t/

�
�r � R3

2r2

�
cos �

and from (3.32)

F D ��
Z
.S/

PU .t/R=2 cos �dS ” F D �2�
3
R3� PU .t/ez

The factor 2�
3
R3� is a mass. It is often called the added mass because if we exert

a force upon the sphere, the latter reacts as if its mass had increased by this quantity
(which is equal in this case to half of the mass of the displaced fluid).

3.3.7.3 Drag and Lift of Two-Dimensional Flows

In the foregoing example we assumed that the volume occupied by the fluid was
simply connected and therefore its flow was without circulation. In two dimensions,
however, the presence of an obstacle makes the fluid “volume” automatically doubly
connected and therefore, even if the flow is irrotational, one can have circulation
along certain contours.

We shall now consider the same problem as in Sect. 3.3.7.1 but in two dimen-
sions. We assume that the curves surrounding the obstacle possess a circulation � .
Let us consider a region attached to the solid and assume that the velocity is uniform
at infinity:

v1 D V0ex

The solution that we are looking for is a solution of Laplace’s equation which
satisfies n � r˚ D 0 on the contour of the solid and r˚ D V0ex at infinity. The
general solution of this type of problem is:

˚ D V0r cos � C � �

2�
C

1X
nD0

An
ein�

rn

5We just need to project the equation on Legendre’s polynomials and to use their orthogonality
with respect to the scalar product

R �
0 P`.cos �/Pk.cos �/d cos � / ı`k .
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OBSTACLE

pressure force

Momentum flux

Fig. 3.5 At equilibrium, the sum of the forces and momentum flux is zero, hence Fobst=fluid C
Fpress C Fmom: flux D 0. The force applied to the solid is �Fobst=fluid D Fpress C Fmom: flux

where the sum represents the multipolar terms that must be added in order to account
for the precise shape of the solid.

The associated velocity field is

v D r˚ D V0 cos �er C .
�

2�r
� V0 sin �/e� C � � �

If we wish to find the force which is exerted on the solid, a simple method
consists in writing the balance of forces and momentum flux that are exerted on
a circle surrounding the obstacle at a distance R (see Fig. 3.5). The momentum flux
on entry is given by

�
Z 2�

0

�vvrRd� D �� V0�
2

ey (3.35)

while the resultant of the pressure forces is

Fp D �
Z 2�

0

P erRd�

which we calculate using Bernoulli’s theorem for an irrotational flow. Equa-
tion (3.22) yields

P D P0 � 1

2
�v2 and v2 D V 2

0 � �

�r
V0 sin � C � � �
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where the dots represent the multipolar terms. The calculation of the integral does
not present any difficulty; we find that

Fp D �� V0�
2

ey (3.36)

When we let R tend to infinity, the multipolar terms contribution vanishes and only
one term remains. Finally, adding (3.35) and (3.36) we find the total force

F D �� V0�ey D ��� � V0 (3.37)

where � D � ez. The force just found is called Magnus’ Force. We see that
depending on the sense of the circulation (which is connected to the shape or to
the sense of rotation of the body when there is viscosity), the force is directed
either upwards or downwards. It is this same force which is responsible for the
trajectory of ping-pong balls or tennis balls when they are sliced, and for the lift on
wings. Formulae (3.35)–(3.37) are obtained in a two-dimensional space so that the
forces are actually forces per unit length. Equation (3.37) leads to the true Magnus
force exerted on cylinder of length L by a simple multiplication by L, namely
F D ��L� � V0.

We further note that this force is perpendicular to the motion, consequently there
is no resistance to the forward motion or drag force.

We could stop here and say that we need the effects of viscosity to calculate the
circulation and therefore the lift. Quite surprisingly, this calculation is not necessary
for the following reason: when we take into account the effects of viscosity we
superimpose upon the irrotational flow the boundary layer corrections which allows
the complete solution to verify all the boundary conditions (see next chapter).
Actually, we may easily realize (see appendix at the end of this chapter) that the
irrotational flow around the profile of a wing has a singularity in the velocity (which
becomes infinite) at the trailing edge if the circulation is not adapted. The real flow
(with viscosity), which should have for limit this singular irrotational flow, would
be very unstable. The problem resolves itself when we observe that for a given
circulation, this singularity disappears. This particular value of � is that which
brings the second stagnation point6 to the trailing edge (see Fig. 3.6). This condition
is usually called Kutta’s Condition.7 For a wing profile where the angle of attack is
˛, we find (see appendix) that:

� D �`V0 sin ˛ (3.38)

where ` is the wing chord (i.e. it’s width).

6Point on the solid where the fluid’s velocity is zero.
7This condition was also found independently by Joukovski in 1906 and is also called sometimes
Joukovski’s Condition.
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A

a

B

First stagnation
Second stagnation
point

point

Trailing edge
Leading edge

A
B

b

Fig. 3.6 (a) A and B are the two stagnation points. On this figure, the circulation is zero and the
second stagnation point is located upstream of the trailing edge where the velocity has a singularity.
In (b) the circulation is such that the trailing edge and the second stagnation point coincide; the
velocity is finite everywhere

3.4 Flows with Vorticity

After the irrotational flows, the following step takes us naturally towards flows that
own vorticity. These flows are more complex than the preceding ones because the
distribution of vorticity is affected by the flow that the vorticity produces. The
problem therefore becomes largely nonlinear (we no longer have the equation of
the velocity potential�˚ D 0) and consequently only a small number of problems
have analytical solutions. We now present the most classic examples.

3.4.1 The Dynamics of Vorticity

In all what follows we call ! D r � v the vorticity. The equation of this quantity is
obtained by taking the curl of Euler’s equation (1.33) which is made explicit using
the following vector equality

r � .v � rv/ D r � .! � v/ D .v � r/! � .! � r /v C .r � v/!

We thus find that the vorticity satisfies:

D!

Dt
D .! � r /v � .r � v/! C 1

�2
r� � rP (3.39)

This equation calls for several comments. In the first place, we note that the
variations of ! in a fluid particle result from three different sources:

1. .! � r /v which is a term of stretching-pivoting: in order to understand its effect,
we take the following simple example where ! is parallel to ez and v represents
a shear along z (see Fig. 3.7). The equation D!

Dt D .! �r/v becomes D!
Dt D ! @v

@z .
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ω
ω

v

a b Δω

=⇒

Fig. 3.7 Evolution of the vorticity field subject to a shear flow: from (a) to (b) the vorticity gains
a component along the velocity field

It shows that, following each fluid particle, vorticity is created parallel to v as
Fig. 3.7b shows. We will find again such a term when we analyse the evolution
of the magnetic field in a fluid with electrical conductivity (Chap. 10).

2. �.r � v/!. We have seen in Chap. 1 the physical meaning of r � v; it represents
the volume variations of the fluid elements. This term thus translates the variation
in vorticity associated with these variations of volume: if the particle contracts
its vorticity increases. Vorticity is created in the same direction and in proportion
to the existing one.

3. 1
�2
r� � rP is the baroclinic torque. This term does not exist (we noted it many

times) if P � P.�/. When it is present, the fluid elements can acquire vorticity,
and thus angular momentum, because the pressure force then exerts a torque on
them (see Fig. 3.8).

Let us now come back to the barotropic case where P � P.�/. Equation (3.39)
simplifies into

D!

Dt
D .! � r /v � !r � v (3.40)

This equation shows that if initially, ! D 0 then ! remains zero: vorticity cannot
be created. This result is, of course, another version of Lagrange’s Theorem (see
Sect. 3.3.3).

In two dimensions, equation (3.40) takes a very remarkable form if the fluid is
incompressible. Indeed, in this case the right-hand side is zero and

D!

Dt
D 0 (3.41)

where ! D !z is the only non-zero component of !.
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Fig. 3.8 Generation of vorticity by baroclinicity. Density increases towards the bottom of the
sphere, thus the pressure force per unit mass ( 1

�1
r P ) is larger than 1

�2
r P . The resulting specific

pressure force thus exerts a torque on the fluid element

This equation shows that in this case ! is a Lagrangian invariant. It implies
Kelvin’s theorem, but also

D!n

Dt
D 0 ”

Z
.S/

!ndS D Cst (3.42)

for all n, S corresponding to a surface advected by the fluid. We shall return to this
equation when we study turbulence in two dimensions.

3.4.2 Flow Generated by a Distribution of Vorticity: Analogy
with Magnetism

Let’s imagine that the distribution of vorticity is given in the space occupied by the
fluid. It is then easy to find the distribution of the associated velocity; it is sufficient
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to solve the equation for v

r � v D !

where ! is given. This equation, which is linear, strongly resembles Ampère’s
equation:

r � B D 
0j

where B is the magnetic field, j the volumic current density and 
0 the permittivity
of vacuum. Ampère’s equation can be solved quasi-analytically, but for this we must
use the vector potential A such that B D r � A. The transposition of these results
to fluid mechanics demands therefore r � v D 0, that is to say, that we need to
restrict ourselves to incompressible fluids. In such a case, just as we solve Ampère’s
equation with

A.r/ D 
0

4�

Z
.V /

j.r0/
kr � r0kdx0dy0dz0

and

B D �
0
4�

Z
.V /

.r � r0/ � j.r0/
kr � r0k3 dx0dy0dz0

which is Biot and Savart’s law, we have for the velocity field:

v.r/ D � 1

4�

Z
.V /

.r � r0/ � !.r0/
kr � r0k3 d 3r0 (3.43)

Contrary to the magnetic case, this solution is not the end of the problem because
the velocity field thus created modifies the vorticity field by way of the equation
(3.40). Problems therefore have simple solutions if the distribution of vorticity is
invariant by the advection that it generates. In particular, we can look for a necessary
condition for steady flows to be possible. From Euler’s equation, assuming that v is
independent of time, we get

! � v D �rq; q D 1

2
v2 C

Z
dP

�
(3.44)

where we assumed the fluid to be barotropic. According to this equation

v � rq D ! � rq D 0 ;

which means that the flow lines and the vorticity lines are on the surfaces q D Cst.
If the flow is two-dimensional, the velocity is expressed with a stream function  
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such that

v D r � . ez/; ! D r � r � . ez/ D �� ez:

We can then transform (3.44) into

� r D rq H) r� � r D 0

which shows that

� D F. / (3.45)

where F is an arbitrary function. We are now going to tackle some examples in this
category.

3.4.3 Examples of Vortex Flows

3.4.3.1 Vortex Sheets

The first example of vortex flows is also the simplest; it concerns the shear layer
also called the vortex sheet: it corresponds to a simple discontinuity in the tangential
component of the velocity field, as shown in Fig. 3.9a. It is easy to see that a contour,
such as that drawn in Fig. 3.9a, has a circulation; if the length of the longer side is
L, the circulation is given by � D .V2 � V1/L.

We shall see in Chap. 6 that such a sheet is always unstable. This instability
produces individualized vortices such as the vortex ring when the vortex sheet rolls
up as indicated in the sketch of Fig. 3.9b under the impulsive motion of the piston.

V

V2

1

Vortex lines

Vortex
sheet

Contour with
circulation

Piston

Detached ring Vortex sheeta b

Fig. 3.9 (a) Vortex sheet. (b) Schematic view of the formation of a vortex ring from a vortex sheet
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3.4.3.2 Rankine’s Vortex

This is the most simple of the vortex flows. It is made up of a cylindrical kernel
in which the vorticity is uniform, and out of which the flow is irrotational. The
associated velocity field is then

8̂<
:̂

! D !ez s � a H) v D 1
2
! � r s � a

! D 0 s > a H) v D !a2

2s
e' s > a

(3.46)

where a is the radius of the cylinder and .s; '; z/ are the cylindrical coordinates. We
observe that the velocity field is purely azimuthal (only the component along e' is
non-zero) and therefore the distribution of vorticity does not change with time. The
velocity field on the outside of the core has been chosen such that the velocity is
continuous at r D a.

Rankine’s vortex is a very simplified model of the flow generated by a cyclone.
We easily show that the pressure passes through a minimum in the centre of such a
vortex (see exercises).

3.4.3.3 Hill’s Vortex

Another exact solution of Euler’s stationary equation consists in distributing the
vorticity within a sphere in the following manner:

! D !r sin �

a
e' if r � a; ! D 0 if r > a

where .r; �; '/ are the spherical coordinates. We thus formulate Hill’s vortex which
moves at constant velocity without being deformed (see Fig. 3.10). We can explain
this property by first examining the velocity field of this vortex.

The components vr and v� of the velocity field obey the two following equations:

8̂̂
<̂
ˆ̂̂:

1

r

@

@r
.rv� / � 1

r

@vr
@�

D !

a
r sin �

1

r2
@

@r
.r2vr /C 1

r sin �

@ sin �v�
@�

D 0

(3.47)

which express respectively r � v D ! and r � v D 0. We are looking for a solution
to this system in the form:

vr D f .r/ cos � and v� D g.r/ sin �
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Fig. 3.10 Meridian streamlines associated with Hill’s vortex. The dotted lines represent the
irrotational flow

The equation of continuity yields:

g.r/ D � 1

2r

d

dr
.r2f /

The other equation gives the equation verified by f :

d2

dr2
.r2f / � 2f D �2!r2=a

the solution of which is:

f .r/ D � !

5a
r2 C AC B=r3

The two constants A and B are such that the velocity is regular at the centre of the
sphere (so that B D 0) and that the radial velocity vanishes at r D a. Thus we get:

vr D !

5a
.a2 � r2/ cos � and v� D !

5a
.2r2 � a2/ sin � for r � a

(3.48)
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We note that on the bounding sphere v� D !a=5 sin � ¤ 0. Outside the sphere
the flow is irrotational and the constants of integration must be adjusted such that
the velocity field be continuous on the sphere and regular at infinity. The velocity
potential being solution of Laplace’s equation we find that

˚.r; �/ D .A0r C B 0=r2/ cos �

The boundary conditions vr .a/ D 0 and v� .a/ D !a=5 sin � allow the calculation
of A0 and B 0 and we thus infer the velocity field:

vr D 2!a

15

�
�1C


a
r

�3�
cos � and v� D 2!a

15

�
1C1

2


a
r

�3�
sin � for r>a

(3.49)

The remarkable feature in these expressions is the existence of a non-zero velocity
at infinity. This velocity represents the velocity of the vortex with respect to the fluid
at infinity; it is uniform and along the vortex axis. Its magnitude is:

V D 2!a

15
(3.50)

The equations for the velocity field also provide the expression for the stream
function inside and outside the vortex. For an axisymmetric flow, one notes that:

vr D 1

r2 sin �

@ 

@�
and v� D � 1

r sin �

@ 

@r

whence, the following two expressions:

 D!r2

10a
.a2�r2/ sin2 � if r � a and  D!ar2

15

�
�1C


a
r

�3�
sin2 � if r>a

These two stream functions give the shape of the streamlines shown in Fig. 3.10.

3.4.3.4 The Vortex Ring

The vortex ring is a spectacular figure of a fluid motion usually known as the smoke
ring (see Fig. 3.11). In fact this is a vortex filament that is closed on itself and
forms a circular ring, hence the name. Around it, the flow is irrotational and can
be calculated with the formula (3.43). The ring being axisymmetric, the velocity
is the same at all of its points and thus its motion is a uniform translation. The
exact calculation of its velocity can be performed if one assumes a finite interior
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Fig. 3.11 Vortex ring
obtained with smoke in the
air. The ring structure shows
the origin of its formation,
namely the roll-up of a vortex
sheet; the Reynolds number is
104 (from Magarvey and
MacLatchy, 1964, c�
Canadian Science Publishing
or its licensors)

radius, but is quite lengthy and we shall limit ourselves to deriving an approximate
expression of it. The velocity induced by the filament is, according to (3.43),

v D 1

4�

Z
.V /

r � !

r3
dV (3.51)

where we have located the origin of the coordinate system on the filament (see
Fig. 3.12). The ring is assumed to be a torus of major radius R and minor radius a,
with a  R. One can note that

r.�/ D 2R sin �; !.�/ D !.cos �er C sin �e� /

and

dV D �a2Rd� 0
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Fig. 3.12 Sketch of the
vortex ring. Note that with
this representation the
equation of the circle is
r D 2R sin �

’R

x

y

r
θ

ω

θ

where � 0 is the angle measured from the centre of the torus so that � 0 D � � 2� .
Hence,

v D !a2

8R

Z �

0

d�

sin �
ez

If one recalls that
Z

d�

sin �
D ln tan �=2

it appears that the integral diverges at 0 and � . In fact, we have not accounted in this
calculation for the fact that the core section is finite and that this effect is important
for the points near the origin. An exact integration would involve elliptic integrals
which are cumbersome to deal with. We thus simply estimate the order of magnitude
of the integral by assuming that the integration domains is Œ"; � � "� with " 
 a=R.
One finds

v 
 �

4�R
ln.2R=a/ez

while the exact formula is:

v D �

4�R

�
ln
8R

a
� 1

4

�
ez (3.52)
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These two expressions have the same asymptotic behavior as R ! 1 or a ! 0.
Our derivation indicates that the logarithmic singularity is due to the regions that are
the closest to the calculation point.

3.5 Problems

1. Streamlines and velocity equipotentials
Show that for an irrotational plane flow of an incompressible fluid, the stream-
lines are orthogonal to the potential lines.

2. Flow in a narrowing duct

g

A B

A

B

h

h

The flow is assumed steady and horizontal between points A and B. Show that
along the z-axis, hydrostatic equilibrium is satisfied. Derive from this equilibrium
the relation between PA and hA. Calculate the difference hA � hB in terms of VA
and VB , assuming an incompressible fluid. What relation holds between VA and
VB and the cross sections of the pipe SA and SB?

3. Rankine’s vortex
Let v be the velocity field of a fluid of constant density �:

�
v D s˝e' s < a

v D ˝a2e'=s s � a

where .s; '; z/ are the cylindrical coordinates.

(a) Show that the flow is irrotational outside the cylinder of radius a.
(b) Give the expression for the pressure in each of the subdomains. At infinity,

P D P1.
(c) What can be said about the quantity 1

2
v2 C P=� in each of the subdomains?

What can be concluded?
(d) Calculate the minimum pressure at the centre of a storm with winds blowing

at a maximum velocity of 50 m/s (180 km/h).
(e) If the vortex is located over the ocean, find from the previous results the

shape of the ocean surface.
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4. Purge of a tank

(a) Lets consider a water tank (assumed to be an inviscid, incompressible fluid),
of cross section S with initial level h0. A valve of cross section s (s  S )
located at the bottom of the tank is open.

i. Show that the flow is irrotational.
ii. Assuming quasi-steady flow, derive the differential equation governing
h.t/, and solve it. Find the time it will take to empty the tank.

iii. Show “a posteriori” that the time derivatives are indeed negligible.

(b) One now adds to the reservoir a horizontal pipe of length `, and of very small
cross section compared to that of the tank. The tank is filled to level h0 which
is kept constant with time. The fluid is initially at rest. At t D 0 the valve at
B (see figure) is opened.

i. Derive the equation of motion of the fluid in the pipe. One assumes that
the pressure in the exit jet is equal to the atmospheric pressure; solve the
differential equation governing the exit velocity. Let’s denote by v1 Dp
2gh0.

ii. The city water utility pressure is 6 bars; if the length of the connecting
pipe from the main pipe to the sink is 10 m, what is the transient time
when you open the tap?

h

•
A

B

0h

5. A U-tube contains an incompressible fluid subject to the gravity field g D �gez.
The tube diameter is constant and very small compared to its length. The fluid
level at equilibrium is z D h0 and the free surface is at atmospheric pressure. �
is the fluid density.

(a) We are interested in the small oscillations of the fluid height about the
average value h0; these oscillations occur for example when the tube is
slightly shaken. The fluid is assumed perfect. Explain why the fluid motion is
necessarily irrotational. What can be said about the velocity inside the tube?

(b) If ˚A and ˚B are the values of the velocity potential at the first and second
free surfaces of the fluid, L the length of the wetted part of the tube and V
the fluid velocity, show that

˚A � ˚B D LV
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(c) Derive from this the differential equation governing the time dependent
height perturbation ıh of the fluid in one of the branches of the tube.

6. Motion of a liquid near an air bubble

We assume that the liquid has a radial motion: v D v.r; t/er .

(a) Show that the liquid’s flow is irrotational.
(b) Derive the expression for v.r; t/ in terms of the bubble radiusR.t/.
(c) We assume that the air inside the bubble is an ideal gas which follows an

isentropic transformation when the bubble radius varies. Neglecting the air
flow, give the expression of the pressure inside the bubble in terms of the
radius.

(d) Give the evolution equation of R.t/ (let P0 be the value of the pressure at
infinity and R0 the radius of the bubble when p D P0).

(e) If one supposes that the bubble radius oscillates slightly about the equilib-
rium value R0, derive the expression for R.t/. What is the frequency f of
such small oscillations?

(f) Numerical application: calculate f for R0 D 1mm and R0 D 5mm; we
give �air D 1:4, �water D 103 kg/m3, P0 D 105 Pa.

7. Show that the potential vorticity of an inviscid compressible fluid, defined by
!=�, is governed by the equation

H
�

!

�

�
D 0 (3.53)

where H is the “Helmholtzian” defined by

H.a/ D @a
@t

C v � ra � .a � r /v (3.54)
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Appendix: Flow Past a Plane at Incidence

When we discussed the complex potential, we remarked that the Joukovski trans-
formation can be used to transform a circle into a flat plate. In a previous example,
we used the Joukovski transformation to find the flow past a circle from the (trivial)
solution of the flow past a flat plate when the velocity is parallel to it.

Now we can do the opposite. Indeed, it is less obvious to find the solution of the
flow with circulation � past a flat plate at incidence ˛ with respect to the flow
at infinity. Conversely, if we consider the circle, we have seen that the velocity
potential is:

˚ D VRe.z C R2

z
/ D V

�
r cos � C R2 cos �

r

�

It is easy to add circulation to this flow since a potential vortex will still satisfy
the boundary conditions; it is also possible to rotate the incoming flow velocity by
an angle ˛ with respect to the axes. With these changes, the velocity potential now
reads:

˚ D V

�
r cos.� � ˛/C � .� � ˛/

2�V
C R2 cos.� � ˛/

r

�

This is nothing but the real part of the complex velocity potential:

F.z/ D V ze�i˛ C �

2i�
ln z C VR2ei˛=z

where we have overlooked the constants. From this expression, one obtains the
complex velocity in the image plane:

w0 D
�
Ve�i˛ C �

2i�z
� VR2ei˛

z2

��
1 � R2

z2

��1
(3.55)

This expression is particular in the sense that it provides the velocity components
in the image plane (where the obstacle is a flat plate at incidence) in terms of the
coordinates in the initial plane (where the obstacle is a circle). To obtain w0 in terms
of z0, it would be necessary to invert the relation z0 D z CR2=z and to substitute the
result into (3.55). But our goal is somewhat different: we only wish to examine the
singularities in the flow past the obstacle and find the condition for � to eliminate
them.
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The points with z0 on the flat plate correspond to z being on the circle, that is
z D Rei� , � 2 Œ0; 2��. Along the flat plate w0 is given by:

w0.�/ D
�
Ve�i˛ C � e�i�

2i�R
� Vei.˛�2�/

��
1 � e�2i� ��1

D
�
Ve�i.˛��/ C �

2i�R
� Vei.˛��/

� �
ei� � e�i���1

D
�
V sin.� � ˛/ � �

4�R

�
sin �

This expression is singular at � D 0 and � D � if � is arbitrary. The trailing
edge corresponds to � D �; we see that the singularity disappears if the circulation
is chosen such that:

� D 4�RV sin˛

One recovers here the expression (3.38) remembering that the plate length is 4R.
One notices that the flow at the leading edge is also singular, but this singularity can
be eliminated by rounding the profile as shown in Fig. 3.4c.

Further Reading

The theory of irrotational flows is often well developed in standard textbooks; one
can refer to Batchelor (1967). With regards to the dynamics of vorticity, further
developments to the notes presented here will be found in Saffman Vortex dynamics
(1992) or in Ting and Klein Viscous vortical flows (1991). On the properties of the
Euler equation, extended material is proposed in Zeytounian Mécanique des fluides
fondamentale (1991).
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Chapter 4
Flows of Incompressible Viscous Fluids

As it was shown in Sect. 3.2.5, the density variations in a fluid flow decrease with
the square of the Mach number (the ratio of the fluid velocity to the sound speed).
Hence, for many fluid flows, and especially for those of liquids, incompressibility
is an excellent approximation. Moreover, it simplifies very much the equations of
motion. This simplification provides us with the easiest context to study the effects
of viscosity that we have neglected until now.

Thus, in this chapter we study the effects of viscosity using solely incompressible
fluids. We first discuss the laws of similarity, which appear thanks to viscosity, then
we deal with two limits: that of flows with a strong viscous force and that of flows
with a slight viscous effect. Next, we review some classical solutions of Navier
equation, and we end the chapter with a short study of forces exerted on solids by
viscous fluid flows.

4.1 Some General Properties

4.1.1 The Equations of Motion

We have seen in the first chapter that the flow of an incompressible fluid with
constant viscosity is governed by only two equations: the equation of continuity
and the Navier–Stokes equation, namely

8<
:
r � v D 0

�
Dv
Dt

D �rP C 
�v
(4.1)
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Indeed, the third equation, the energy equation, uncouples completely from the
two others. An important consequence of this uncoupling is that the pressure does
not have a dynamic role. It doesn’t drive the flow but is driven by the flow. This
property follows from the fact that the velocity field is entirely determined by

8<
:
r � v D 0

r �
�
Dv
Dt

� ��v
�

D 0
(4.2)

and the boundary conditions

v D vs on .S/

where S is the boundary (supposedly solid with a velocity vs) which delimits the
fluid. The pressure is thus entirely determined, up to a constant, by

rP D 
�v � �
Dv
Dt

Another important property of this system of equations is that, if the viscosity of
the fluid is large enough, the solution is unique. “Large enough” means larger than
some critical value below which the system has several solutions. Physically, this
shows up with the raise of an instability in the original solution. We shall discuss
this point later on, but presently we just note that this phenomenon is a consequence
of the nonlinear character of the equations.

4.1.2 Law of Similarity

A fluid flow always involves the dynamic time scale, which is the typical time that
it takes for a fluid particle to cover the distance L, namely

Td D L

V
(4.3)

where V is the typical velocity of the fluid. If the fluid is viscous then another time
scale comes about; this is

Tv D L2

�
(4.4)

also called the viscous diffusion time. The origin of this definition is the following: if
we consider a very slow flow, the quadratic term v�rv in the Navier–Stokes equation
is very small compared to other terms. Neglecting this term and taking the curl of
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the momentum equation, we get the linearized equation of the vorticity ! D r � v,
namely

@!

@t
D ��! (4.5)

This is the diffusion equation (see Sect. 12.6.4 for a presentation of its basic
properties). Schematically, if ! varies on a length scale L, then �! 	 !=L2 and
@!=@t 	 �!=L2 which shows that ! evolves on a time scale of order L2=�.

The dynamic and viscous time scales are compared through the non-dimensional
ratio

Re D Tv

Td
D VL

�
(4.6)

also called the Reynolds number. It characterizes the ratio between two transport
velocities: the macroscopic (dynamic) transport and the microscopic (diffusive)
transport. This non-dimensional number is the only parameter intervening in the
equations of motion of an incompressible viscous fluid. Indeed, if we make the
following change in the variables:

v D V u ; P D �V 2p ; r D Lx and t D L

V
�

then, u, p, x, � represent respectively the non-dimensional velocity, pressure, spatial
coordinates and time. The equations of motion read

8<
:
r � u D 0
@u
@�

C u � ru D �rp C 1

Re
�u

(4.7)

Save for the parameters that may be added in the boundary conditions, the solution
u depends on just one quantity, which is the Reynolds number. All the flows having
the same Reynolds number are identical up to a constant scale factor: they are said
to be similar. This conclusion is true only if the solution is unique, that is to say, if
the viscosity is large enough or if the Reynolds number is small enough.

Let us consider a simple example of the use of the similarity between flows. A
solid represented by a cube of 1 cm side moves in air at a speed of 1 cm/s. The air
flow is exactly the same as one around a cube of 1 m side moving at 0.1 mm/s. A
practical application of the similarity relation is the use of reduced models to study
some complex flows.
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4.1.3 Discussion

System (4.7) gives us the first example of the flow equations written with non-
dimensional variables. The use of non-dimensional variables is the rule in Fluid
Mechanics. Thus doing, we are able to compare the various scales that intervene in
a fluid flow. The foregoing example is very simple, but as we progress, we shall see
that many non-dimensional numbers come into play. These numbers are crucial to
compare the flows to each others and eventually evaluate the difficulties to compute
them.

Finally, let us observe that perfect fluids correspond to the limit of infinite
Reynolds numbers. However, this limit is singular because, as viscosity vanishes,
second order derivatives disappear from the equations thus making some boundary
conditions unmatched. This singularity is at the origin of the boundary layers, which
appear when the Reynolds number is very large (see Sect. 4.3).

We shall further explore the dynamics of viscous fluids with the help of two
limiting cases: the one of very viscous fluids and the one of nearly inviscid fluids.
In other words, we shall study the two limits: the very small and the very large
Reynolds numbers. We begin with the first case, which is the easiest one.

4.2 Creeping Flows

Creeping flows are all the flows for which the inertia of the fluid is negligible. Their
Reynolds number is therefore very small compared to unity.

Examples of such flows come from the very viscous fluids (magma, for instance)
or from the flows with very small scales (lubrication, microfluidic,. . . ).

4.2.1 Stokes’ Equation

We consider the momentum equation in (4.7) and multiply it by the Reynolds
number while carrying out the substitution p ! p=Re. We get

Re
@u
@�

C Re u � ru D �rp C�u

Setting Re D 0, we get Stokes’ Equation :

� rp C�u D 0 (4.8)

We may observe that, by taking the limit Re=0, we eliminated the time derivative
of the velocity. Does this mean that all flows with very small Reynolds number are
stationary? Not quite, of course! It means that if the appropriate time scale is L=V
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then the temporal variations are truly negligible and the flow is steady. But we can
easily envision a flow where there is a time dependent forcing. In this case, the time
scale of this forcing is a new independent parameter which controls the amplitude
of the term @v=@t .

Stokes equation can take two other equivalent forms for an incompressible fluid:

rp C r � ! D 0 or �! D 0 (4.9)

where ! D r � v is the vorticity. We also note, by taking the divergence of (4.8),
that the pressure verifies Laplace’s equation:

�p D 0

The essential property of these equations is their linear character. The solutions thus
own all the properties associated with linearity. For instance, an interesting property
is the reversibility : if v is a solution then �v is also a solution. Any fluid particle
goes back to its initial position if the forcing is reversed (the nonlinear terms break
this symmetry).

Another important consequence of the linearity of Stokes’ equation is the
uniqueness of the solution for a given set of boundary conditions. Below, we
demonstrate this property by showing that the solutions obey a variational principle.
The unicity of the solutions also resolves the problem of stability: the solutions are
always stable.

Finally, note a third possible form of Stokes’ equation:

DivŒ�� D 0 or @j �ij D 0 (4.10)

where Œ�� is the stress tensor. This form is more general than the previous ones since
it does not make use of the explicit form of the stress tensor.

4.2.2 Variational Principle �

Equation (4.10) can be obtained with the help of a variational principle, such as
the least action principle. This means that the solutions of (4.10) render extremum
a functional of the velocity field defined on the space occupied by the fluid. This
functional is just the viscous dissipation.

In order to show this result, we shall consider a Newtonian fluid inside a given
volume, limited by a surface (S ), where the velocity is given as on a solid wall. On
this surface the variations of the velocity ıv vanish. The dissipation in this volume
is given by:

D D
Z
.V /




2
cijcij C �.r � v/2

�
dV
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where we do not assume incompressibility. A variation of D associated with the
variations of v is easily obtained by a functional derivation of the integral with
respect to the velocity field:

ıD D
Z
.V /

˚

cijıcij C 2�.r � v/.r � ıv/� dV (4.11)

According to the rheological law of Newtonian fluids 
cij D �v
ij � �r � v ıij where

Œ�v� is the viscous stress tensor. Moreover, ıcii D 0; hence, the foregoing expression
may be rewritten as

ıD D
Z
.V /

˚
�ijıcij C 2�.r � v/r � ıv� dV

The expression (1.40) of cij and the symmetry of the viscous stress tensor allows us
to simplify the preceding expression. Thus

ıD D 2

Z
.V /

�ij@i ıvjdV

Using the equation of motion (4.10) together with the divergence theorem, we finally
obtain

ıD D 2

Z
.S/

�ijıvj dSi D 0 (4.12)

This last integral is zero because of the boundary conditions imposed on ıv. The
dissipation is therefore at an extremum for the velocity field verifying Stokes’
equation. We now show that this extremum is a minimum. For this, we observe that
the dissipation is a linear function of the squared gradient of velocity. Symbolically,
we can write that

D.v/ D L �.@v/2
	

where L is a linear operator. We have shown that

ıD D 2L ..@v/.@ıv// D 0

Now we make the difference between the dissipation associated with the field v
solution of the equations and that associated with the field v C ıv where ıv is a
variation. We have:

D.v C ıv/ �D.v/ D L �Œ@.v C ıv/�2
� � L �.@v/2

�
D L �.@v/2 C .@ıv/2 C 2.@v/.@ıv/

�� L �.@v/2
�

D L �.@ıv/2� D D.ıv/ � 0
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This result shows that whatever the variation of v made around the true solution, the
dissipation increases. This quantity is therefore a minimum for the true solution.

Let us now show that this implies the uniqueness of the solution. For that, it
is convenient to take two solutions and show that they are in fact identical. Let v1
and v2 be two such solutions; their dissipation being at the minimum is therefore
identical. From the foregoing results, we necessarily have

L �Œ@.v1 � v2/�
2
� D 0

The operator L being only an integration, we infer from the preceding equation
that the integrant is zero everywhere within the fluid @.v1�v2/ D 0. In fact @.v1�v2/
symbolizes all the components of the shear tensor and the divergence; we therefore
have:

cij.v1 � v2/ D 0 and r � .v1 � v2/ D 0

From these two equations we derive a third one, namely

sij.v1 � v2/ D 0

which means that the symmetric part of the velocity gradient tensor is zero. We
have seen in Chap. 1 that this implies that v1 � v2 is the combination of a solid
body rotation and a translation. But v1 and v2 satisfy the same boundary conditions,
thus, in general, the rotation and the translation are both zero. Thus, v1 and v2 are
identical.

The preceding results are not valid when the Reynolds number is large. In this
case the solution is not unique and does not produce a minimum of dissipation.

4.2.3 Flow Around a Sphere

As a first example we shall consider the flow of a viscous fluid around a sphere
moving slowly. We assume that the fluid fills the whole space and that the flow is
steady. The Reynolds number, based on the velocity of the sphere and its diameter,
is very small compared to unity so that we can use Stokes’ equation. Returning to
the dimensional variables, we have

� r � v D 0

0 D �rP C 
�v
(4.13)

Using a reference frame whose origin is at the centre of the sphere, the boundary
conditions are

v D 0 at r D R and v ! U ez when r ! 1
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Note that �Uez is the velocity of the sphere in a rest frame. We use the spherical
coordinates. Since the flow is axisymmetric around the z-axis, the velocity and the
pressure only depend on r and � . Moreover, v has no component along e' .

In order to solve system (4.13) we expand the functions on the basis of
Legendre’s polynomials in the following manner:

8<
:

vr D P
` u`.r/P`.cos �/

v� D P
` v`.r/

dP`
d�

P D P
` p`.r/P`.cos �/

(4.14)

Legendre’s polynomials satisfy the differential equation

1

sin �

d

d�

�
sin �

dP`
d�

�
C l.l C 1/P` D 0

Using the equation of continuity, we derive the relation between u`.r/ and v`.r/

`.`C 1/v`.r/ D 1

r

dr2u`
dr

We also find that

r � v D �
X
`

�`.ru`/

`.`C 1/
P`.cos �/e';

and

�v D �r � .r � v/ D �`.ru`/

r
P`.cos �/er C 1

r

d

dr

�
r�`.ru`/

`.`C 1/

�
dP`
d�

e�

�` being the operator

�` D 1

r

d2

dr2
r � `.`C 1/

r2

As Legendre’s polynomials form an orthogonal basis as well as their derivative, we
easily find that

8̂
ˆ̂<
ˆ̂̂:

dp`

dr
D 
�`.ru`/=r

p`.r/ D 

d

dr

�
r�`.ru`/

`.`C 1/

� (4.15)



4.2 Creeping Flows 119

which yields

�`�`.ru`/ D 0 (4.16)

The general solution of this equation is in the form of the powers of r ; namely

u`.r/ D Ar`�1 C Br`C1 C Cr�` C Dr�`�2

In order to find these four constants, we need four boundary conditions; vr .R/ D
v� .R/ D 0 imply

u`.R/ D v`.R/ D 0; 8`

while at infinity we have

v ! U ez D U.cos �er � sin �e� /; as r ! 1

One may verify that this last condition leads to

lim
r!1 u1.r/ D U and lim

r!1 u`¤1.r/ D 0

The boundary conditions implies that all the coefficients, except those of u1, are
zero. More explicitly, we have

u1.r/ D AC Br2 C C

r
C D

r3
(4.17)

Using the conditions at infinity we find A D U and B D 0, while with those on
the sphere it turns out that

C D �3UR=2; D D UR3=2

Since P1.cos �/ D cos � , we finally obtain

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

vr D U cos �


1 � 3R

2r
C R3

2r3

�

v� D �U sin �


1 � 3R

4r
� R3

4r3

�

p D � 3
UR
2r2

cos �

(4.18)



120 4 Flows of Incompressible Viscous Fluids

Fig. 4.1 Streamlines in the meridional plane of the Stokes’ flow around a sphere in uniform
motion in a viscous fluid

The velocity field can be expressed with a stream function  describing the
streamlines in the meridional plane as shown in Fig. 4.1. The expression of the
stream function is

 D 1

2
Ur2 sin2 �

�
1 � 3R

2r
C R3

2r3

�

since

vr D 1

r2 sin �

@ 

@�
and v� D � 1

r sin �

@ 

@r

From the expression of the velocity, we also infer the expression of the vorticity
field:

r � v D �3UR

2r2
cos � e'; (4.19)

which will be used later on to compute the drag force exerted on the sphere.
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4.2.4 Oseen’s Equation

Stokes’ equation has been derived for vanishing Reynolds numbers. However, in
any experiment, even if the Reynolds number is very small, it is finite. This makes
Stokes’ equation invalid far from the solid. This strange property comes from the
nature of the solutions of Stokes equation, which is a kind of Laplace equation. The
solutions of Stokes’s equation that vanish at infinity are power laws of the distance
(like (4.17) for instance). For these solutions, the length scale characterizing the
velocity variations grows with r . Indeed, a typical length scale of the velocity field
V is L D .d lnV=dr/�1, thus if V 	 1=rn then L 	 r=n. The consequence of
this growing scale is that nonlinear terms decrease more slowly than viscous ones
as they contain only first order derivatives. The distance by which nonlinear terms
overtake the linear one can be guessed from an order of magnitude estimate

.u � r /u 	 1

Re
�u H) 1

L
	 1

L2Re
H) L 	 Re�1

where the Reynolds number is computed from the dimensions of the object. The
foregoing result shows that this critical length goes to infinity as the Reynolds
number vanishes.

Hence, the computation of flows extending to distance larger than Re�1 must
take into account the corrections imposed by nonlinear terms. For instance, if we
wish to compute the flow around a solid body moving at constant speed in a very
viscous fluid, we may set u D U1 C ıu (U1 is the fluid velocity at infinity in a
frame attached to the solid) and first solve Stokes equation. However, at distances
larger than Re�1, corrections from nonlinear terms are important. These are taken
into account by keeping the leading order of these terms. Hence, in these regions,
one has to solve

.U1 � r /ıu D �rp C 1

Re
�ıu (4.20)

which is Oseen’s equation. Although this equation seems more complete than
Stokes one, it is not valid close to the solid as the flow is not close to a uniform
velocity field. Thus, Oseen’s equation is useful to complement Stokes’ equation
when the fluid’s domain is larger than Re�1; in this case the solution of both
equations must be matched together, which may be delicate. Of course, if the domain
is not that large, Stokes’ equation is sufficient.

4.2.5 The Lubrication Layer

We end this section with the study of another type of flows at very small Reynolds
number, namely the case of the lubrication layer, which was analysed for the first
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h1

h2

U

S

Fig. 4.2 Schematic view of a lubrication layer. In the reference frame of the solid S the ground
moves to the right at speed U entraining the fluid to flow in the same direction

time by Reynolds in 1886. The flow in a lubrication layer has numerous applications,
especially in tribology (the study of friction). The lubricating effect of a thin fluid
layer between two solids is shown by an experiment of everyday life: that of a sheet
of paper, which glides practically without friction on a smooth floor. A thin layer
of air forms between the floor and the paper, making an air cushion, which reduces
drastically the friction. We may also observe that in the same conditions of incidence
and velocity, but far above the floor, the sheet of paper has not a sufficient lift to
compensate its weight, and falls.

In order to understand the fundamentals of lubrication, we shall consider the
simple system illustrated in Fig. 4.2. A solid with a length ` glides with a velocity
U above a fixed solid plane. An incompressible viscous fluid flows between the two
solids, forming the lubrication layer. The Reynolds number of this flow, based on
the thickness of the fluid film, is supposedly very small:

Uh

�
 1

We assume the contact surface of the solid S to be plane and slightly inclined as in
Fig. 4.2. As shown, the thickness h varies linearly with the abscissa; we thus set

h.x/ D h1 C .h2 � h1/x=` and ˛ D .h1 � h2/=`  1 :

In order to analyse the flow, we use a frame attached to the moving solid. The
boundary conditions are therefore

v D U ex at z D 0 and v D 0 at z D h.x/

The flow is stationary and with a very small Reynolds number. It therefore satisfies
Stokes’ equation (4.13). Using the x-component of the momentum equation, we get

� @P

@x
C 


@2vx
@z2

D 0; (4.21)

where we neglected the x-dependence of the velocity field. Terms coming from
this dependence are O.˛/ or smaller, thus (4.21) is just the zeroth order in ˛. At
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this same order we see that Gp D @P=@x is independent of x. Solving for the
z-dependence gives the following form of vx :

vx D U
h � z

h
C Gp

2

.z � h/z (4.22)

This solution is the superimposition of two exact solutions of the Navier–Stokes
equation: Couette’s flow

u D U.h� z/=h ex

and Poiseuille’s flow

u D Gpz.z � h/=2
 ex

that we shall discuss in Sect. 4.4.1.
In the expression of the velocity, Gp is an unknown. However, it may be related

to the volume flux Q which is the same at any x since the fluid is incompressible.
Neglecting the third dimension, we have

Q D
Z h

0

vxdz D Uh

2
� Gph

3

12


which leads to

Gp D dP

dx
D 12


h3

�
Uh

2
�Q

�
(4.23)

If the solid S is completely immersed in the same fluid (as the sheet of paper), the
pressure on the two ends is identical. Rewriting (4.23) as

Gp



D 1




dP

dx
D 1




dh

dx

dP

dh
D �˛




dP

dh
D 6U

h2
� 12Q

h3

and integrating between h1 and h2, we can express the volume flux as a function of
the parameters of the problem. We find

Q D U
h1h2

h1 C h2
(4.24)

We can then give the expression of the pressure field in the domain Œ0; `� :

P.x/ � Po D 6
U.h1 � h.x//.h.x/ � h2/
˛.h1 C h2/h.x/2

(4.25)
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where Po is the pressure at the ends of the solid. Using this expression, in which we
insert h.x/ D h1 � ˛x, we can observe that

ıP D P.x/ � Po / x.` � x/=.h1 � ˛x/2;

showing that the pressure reaches a maximum in the neighborhood of `=2. The
maximum value of the pressure may be expressed as a function of the parameters of
the problem, namely

ıPmax D 6
U˛`

.h1 C h2/3
(4.26)

This result shows that the pressure strongly increases when the thickness of the
fluid layer vanishes. Furthermore, the total pressure force can be derived from Fl DR `
0
ıPdx. After little algebra,1 we find

Fp D 6
U

˛2

�
ln

�
h1

h2

�
� 2

h1 � h2
h1 C h2

�
(4.27)

It is interesting to compare this lift force to the total shear stress exerted upon the
moving solid, which is just the drag force. By using a similar calculation, we find

Fd D
Z `

0



@vx
@z

dx D 2
U

˛

�
3
h1 � h2

h1 C h2
� ln

�
h1

h2

��
(4.28)

so that

Fdrag

Flift
D ˛

3

n
3 h1�h2
h1Ch2 � ln



h1
h2

�o
n
ln


h1
h2

�
� 2 h1�h2

h1Ch2
o (4.29)

Since ˛  1, the horizontal force is very much smaller than the vertical one. This
is why a large mass can be moved effortlessly with bearings. An example is given
in exercise.

1The reader may note that after an integration by part

Z `

0

x.`� x/

.h1 � ˛x/2
dx D � 1

˛

Z `

0

`� 2x

h1 � ˛x
dx

while
Z `

0

`� 2x

h1 � ˛x
dx D

Z `

0

�
`� 2h1=˛

h1 � ˛x
C 2

˛

�
dx

.
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4.3 Boundary Layer Theory

In the foregoing section we considered flows with very low Reynolds numbers, fully
dominated by the viscous force. Now, we shall examine the opposite limit, that of
laminar flows at large Reynolds numbers.

4.3.1 Perfect Fluids and Viscous Fluids

Contrary to the low Reynolds number flows, the present ones are not always stable.
Beyond some critical Reynolds number, several solutions are possible. However,
this critical value may be large compared to unity. Thus it is often the case that the
flow is stable even if Re � 1. This is the typical situation that we shall investigate
now.

A convenient example to bear in mind is the one of a flow around a solid body.
Let us think of a car or an airplane moving at constant speed. In the frame attached
to the solid, the fluid shows a uniform velocity field in the far distance of the body.
We assume that the Reynolds number, based on the typical size of the object, is large
compared to unity. Such a set-up was already discussed in the case of perfect fluids
(see Sect. 3.3.7). There we argued that the flow was irrotational, so that there exist
� such that v D r�. It is interesting to note that such kind of solution is almost
acceptable for a viscous fluid. Indeed, for an incompressible fluid (r � v D 0), the
viscous force associated with a potential flow is zero, since:

�r� D r .r � v/ � r � r � r� D 0

However, this solution is not fully acceptable since it does not meet the no-slip
boundary conditions on the solid. The fluid sticks to the solid and we can surmise
that close enough to it, the viscous force dominates over the other forces, which is
clearly not possible if the flow remains irrotational.

To specify what is meant by “close enough”, we have to go back to the
momentum equation (4.7). If the viscous force is important in some region of the
flow, then, in this place

�u & O.Re/

since other terms are supposedly of order unity. Such an inequality can be realized
in only two ways: either u is very large compared to unity or its spatial variations are
very rapid. The first possibility can be eliminated thereof since close to the solid the
velocity cannot grow much as it vanishes on the boundary. The second possibility is
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X3

X1

“Perfect” flow

Boundary layer

Solid

Fig. 4.3 Geometry of a boundary layer flow

therefore the right one. The function u varies very rapidly in the vicinity of the solid.
If " is the characteristic scale of the velocity field, the viscous force is dominating if

1

Re
�u 	 1

Re

u

"2
	 O.1/ ” " D O.1=pRe/

since we assumed that u 	 O.1/.2
We thus find that around a solid body in a large Reynolds number flow, there is a

very thin layer of thickness " D 1=
p

Re  1 where the viscous force may control
the flow. This is the boundary layer. At a distance of a few times ", the viscous force
is usually negligible and the fluid behaves as if perfect. This example shows us that
high Reynolds number flows may be split into regions with very different dynamics:
.i/ the boundary layers controlled by viscosity (or other diffusion processes in more
general situations) and .ii/ the “remaining” where Euler’s equation is sufficient to
describe the flow. This is schematically illustrated in Fig. 4.3.

Before closing this heuristic introduction to boundary layers, let us mention
that regions where viscous force is important are not systematically attached to
boundaries. It turns out that in some cases strong shear layers occur in the middle
of the fluid. They are no longer boundary layers but detached (shear) layers.
Let us also underline that the technique of splitting the fluid domain into various
subdomains is not specific to fluid mechanics but is in fact a way of obtaining an
approximate solution of (partial) differential equations that are too difficult to be
solved analytically.3

2Here is a very simple example of such a property: sin.x="/ is O.1/ but d2

dx2
sin.x="/ is O.1="2/.

3An example where we determine the solution of a differential equation using boundary layer
theory is given in Sect. 12.4.
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4.3.2 Method of Resolution

The preceding discussion has shown that a small parameter "  1 is naturally
introduced in this problem. A way of taking advantage of this peculiarity is to
expand the solutions into powers of " and write:

u D u0 C " u1 C "2 u2 C � � � (4.30)

Furthermore, we can take advantage of the partition of the flow into the boundary
layer and the inviscid outer flow. In the boundary layer viscosity is important
and the full equation need to be solved. However, the shape of the flow is rather
simple as it is parallel to the boundaries. On the other hand, the outer flow
does not need viscosity, which may be neglected at zeroth order. Hence, in both
domains the solution can be simplified. The strategy is therefore obvious: in each
domain solutions are expanded according to (4.30). Each order is solved in each
domains and the solutions are matched together. This technique is called asymptotic
matching. The final result is an asymptotic solution valid up to some higher order
correction in "n. We shall now detail all these steps.

4.3.3 Flow Outside the Boundary Layer

Outside the boundary layer, the derivatives are all of order unity. Thus using the
expansion (4.30) and identifying each order in ", we get

8<
:

u0 � ru0 D �rp0
r � u0 D 0

u0 � n D 0 on S

(4.31)

at zeroth order, and

�
u0 � ru1 C u1 � ru0 D �rp1
r � u1 D 0

(4.32)

at first order. We do not write the boundary conditions yet; they need further
discussion and will be introduced at the end of the next subsection. Note that at
second or higher orders, viscous terms need to be taken into account, even if we are
outside the boundary layer.

In the simple case where the zeroth order velocity field is irrotational, equation
may be simplified

�
�˚0 D 0

n � r˚0 D 0 on S
(4.33)
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4.3.4 Flow Inside the Boundary Layer

The foregoing equations give solutions that are not valid close to the boundaries of
the fluid. There, the viscous force is important. Viscous terms make the equations
of higher order, but, as noted above, the geometry of the flow is simpler, as almost
parallel to the boundary. To take advantage of this property, it is natural to introduce
three curvilinear coordinates .x1; x2; x3/ where x3 D Cst is the equation of the
boundary. In order to simplify the following discussion, we shall assume that the
bounding surface of the fluid is just the z D 0-plane. Plain cartesian coordinates are
thus sufficient.

As in the “inviscid domain”, we expand the unknowns in powers of the small
parameter ". We use the tilde to denote boundary layer quantities; hence, the
boundary layer flow is expressed:

Qu D Qu0 C " Qu1 C "2 Qu2 C � � �

Boundary layer quantities are characterized by their rapid variations in the direction
perpendicular to the boundary. Partial derivatives should therefore be ordered as

@=@x; @=@y  @=@z (4.34)

This inequality can be made more quantitative since we know the thickness of the
boundary layers, namely ". Thus, a typical boundary layer function Qf reads

Qf � Qf


x; y;

z

"

�

One usually introduces the stretched coordinate Qz D z=", so that Qf � Qf .x; y; Qz/.
With this new coordinate, the inviscid region, which is at z D O.1/, is now rejected
at infinity, since for a fixed z, Qz ! 1 as " ! 0.

The thickness of the boundary layer, and thus the stretched coordinate, is such

that @
Qf

@Qz D O.1/; hence, normal variations of the boundary layer functions, namely

@z
Qf , are all of order "�1. Besides, the horizontal variations of the fields (velocity and

pressure) are controlled by those in the perfect domains. Indeed, the solutions in the
boundary layer match those of the perfect domain at each point on the bounding
surface, thus horizontal variations in the boundary layer are the same as those just
outside of it. In the perfect domain, all the scales are of order unity, therefore
horizontal gradient in the boundary layer are also of order unity; thus inequalities
(4.34) mean

@x Qf � O.1/; @y Qf � O.1/; and @z
Qf � O."�1/



4.3 Boundary Layer Theory 129

Let us now consider the equation of mass conservation. Using (4.30) together
with r � v D 0, we find that the lowest order is O."�1/. It yields

@Qu0;z
@Qz D 0 :

This equation implies that

Qu0;z D 0 (4.35)

since the velocity is zero on Qz D 0. This result shows an important property of
boundary layers: the component of the velocity that is perpendicular to the layer is
much smaller than the one parallel to it; it is at least of the next order in ".

The following order of the equation of continuity reads

@Qu0;x
@x

C @Qu1;z
@Qz D 0 (4.36)

The Navier–Stokes equation develops in the same way and the first terms, of zeroth
order, yield the two equations

8̂
ˆ̂<
ˆ̂̂:

Qu0;x @Qu0;x
@x

C Qu1;z @Qu0;x
@Qz D �@ Qp0

@x
C @2 Qu0;x

@Qz2

0 D �@ Qp0
@Qz

(4.37)

(4.36) and (4.37) are known as Prandtl’s equations of the boundary layer. These
equations show that the pressure does not depend on the coordinate Qz; in other words,
it is determined, like Qu0;z, by the flow outside the boundary layer. This implies that
in (4.37) @ Qp0

@x
is given by the “perfect fluid flow”, so that

@ Qp0
@x

D @p0

@x

Prandtl’s equations can be rearranged in the following way. We derive Qu1;z from
(4.37), and we substitute it into (4.36). Thus

Qu1;z D �Qu0;x @Qu0;x
@x

� @ Qp0
@x

C @2Qu0;x
@Qz2

@Qu0;x
@Qz

(4.38)

and

@Qu0;x
@x

C @

@Qz

0
@�Qu0;x @Qu0;x

@x
� @ Qp0

@x
C @2Qu0;x

@Qz2
@Qu0;x
@Qz

1
A D 0 (4.39)
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This last expression shows that the boundary layer equations are nonlinear and of the
third order. Three boundary conditions are thus necessary to determine the solution.
These are:

• Qu0;x D 0 at Qz D 0,
• Qu0;x �! u0;x when Qz �! C1,
• Qu1;z D 0 at Qz D 0.

We observe that the limit value of Qu1;z when Qz ! C1 is not specified. It cannot
be since Qu1;z obeys a first order equation (4.36). In general, limQz!C1 Qu1;z ¤ 0 so that
there exist a mass flux between the boundary layer and the perfect fluid domain. The
value of Qu1;z plays in this way the role of the boundary value for the first order terms
in the perfect domain. Thus, system (4.32) is completed by the boundary condition

u1;z.z D 0/ D lim
Qz!C1

Qu1;z (4.40)

4.3.5 Separation of the Boundary Layer

We may observe that (4.38), which gives Qu1;z, becomes singular if, at some point on
the boundary layer,

@Qu0;x
@Qz D 0 (4.41)

Stagnation
point

Boundary
layer Separated

boundary layer

Recirculation
vortex

When approaching such a point, the vertical variations of Qu0;x are on an
increasingly larger scale, in other words the boundary layer becomes thicker up
to the point of being “infinite”. One says that there is a separation of the boundary
layer. Let us note that the boundary layer becomes infinitely thick with respect to
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the coordinate Qz. It does not mean that the boundary layer is overrunning all the
fluid domain, but simply that its true scale is no longer " but a much greater scale.
For example, if the thickness is "

1
2 and that it is developed in spite of everything

in powers of ", the thickness will be O.1=" 12 / in the coordinate Qz and therefore
infinite when " is vanishing. Thus, at the point of separation, Qu1;z diverges but in the
neighbourhood of such a point Qu1;z is no longer of order unity and the expansion in
powers of " is no longer valid.

Equation (4.41) determines the position of the point of separation when solving
Prandtl’s equation. In fact, it is not necessary to solve this equation in order to know
the position of this point. Indeed, if @Qu0;x

@Qz D 0, then, using boundary conditions,
Qu0;x D 0. As the tangential velocity in the boundary layer is also the tangential
velocity of the perfect fluid on the solid, we find that the separation of the boundary
layer occurs close to a (downstream) stagnation point of the perfect fluid flow (see
figure).

4.3.6 Example of the Laminar Boundary Layer: Blasius’
Equation

We shall now illustrate the foregoing general theory with a very classical example
which is Blasius flow. This is the boundary layer flow generated by a thin horizontal
plate parallel to the flow at infinity (see Fig. 4.4). Far from the plate the pressure is

X

Z

ũx

ũz

b(x)

Fig. 4.4 Left: Shape of the boundary layer on a plate in a uniform flow. Right: View of the
functions F (dotted line), f (solid line) and f 0 (dashed line)
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uniform. Equations (4.36) and (4.37) thus reduce to

8̂̂
<̂
ˆ̂̂:

Qu0;x @Qu0;x
@x

C Qu1;z @Qu0;x
@Qz D @2 Qu0;x

@Qz2

@Qu0;x
@x

C @Qu1;z
@Qz D 0

(4.42)

Despite their apparent complexity, these equations admit analytical solutions when
one imposes self-similarity. Indeed, we may set

Qu0;x D Uf

� Qz
b.x/

�
and Qu1;z D V.x/g

� Qz
b.x/

�
(4.43)

where U is the velocity at infinity. Such a velocity profile is said to be self-similar,
because for all x, its shape is identical and given by f . Then, we introduce the
similarity variable � D Qz=b.x/ and rewrite the equations. The equation of mass
conservation (4.42b) gives

V.x/g0.�/ D U�f 0.�/b0.x/ (4.44)

The primed functions designate the derivatives. This equation shows that if self-
similar solutions exist then V.x/=b0.x/ is a constant. Dimensionally, this constant
is a velocity that can be set to U without loss of generality.

Turning to the momentum equation, we find

f 00 D �Ub.x/b0.x/�ff 0 C b.x/V .x/gf 0 (4.45)

As before, this equation admits self-similar solutions if b.x/b0.x/ and b.x/V .x/ are
constants. We therefore set

b.x/ D p
Lx H) bb0 D L=2 and b.x/V .x/ D UL=2

b.x/ is the thickness of the boundary layer. The preceding expressions show that
this quantity grows like the square root of the distance to the leading edge of the
plate. We shall return further on to the physical interpretations of this result.

Finally, (4.45) is rewritten as

f 00 D UL

2

�
gf 0 � �ff 0�

whereU andL are dimensionless constants, which represent a velocity and a length
scale respectively. We use them as the velocity scale and length scale, which is
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equivalent to setting U D L D 1. By using (4.44), which we now write g0.�/ D
�f 0.�/, we thus deduce a first form of Blasius’ equation :

�
f 00

f 0

�0
D �1

2
f ” f 00 D �1

2
f 0
Z �

0

f .y/dy (4.46)

Another classical form of Blasius’ equation may be found by introducing a stream

function like F D
Z
fd�. Equation (4.46) yields then

2F 000 C FF00 D 0 (4.47)

This equation is completed by three boundary conditions:

• F 0.0/ D 0, (vx D 0 on the plate),
• F 0.Qz ! C1/ D 1, (velocity is constant at infinity)
• F.0/ D 0, (vz D 0 on the plate).

The functions f or F need to be determined numerically4 and are shown in
Fig. 4.4.

The solution of Blasius’ equation allows us to show two general phenomena of
boundary layers: The flow in a boundary layer vanishes exponentially in the outer
region and there is a flux of matter between the boundary layer and the rest of the
fluid. This is the so-called boundary layer pumping. We can demonstrate this last
point by recapitulating the asymptotic form of f 0 for the large values of �. In this
case, f 0 	 exp.��2=4/ and we get the component of the velocity vz by way of the
equation of mass conservation g0 D �f 0, which we integrate taking into account
that lim�!1 g D 0. Hence,

g 	 �2e��2=4

4We can get an idea of the shape of the function f .�/ by considering the asymptotic limits � � 0

and � ! 1.
Near the origin, (4.46) and the boundary conditions impose that f .0/ D f 00.0/ D f 000.0/ D 0;

hence, a Taylor expansion yields

f .�/ � a�� a2

48
�4 C O.�7/

where a D f 0.0/ ' 0:332058 (this value is determined by the boundary condition f .1/ D 1).
This expression shows that the profile of the velocity is almost linear just before reaching the
asymptotic value where f .�/ ' 1. In this region (� � 1), the function f verifies approximately
f 00 D ��f 0=2 whose solution for f 0 is Gauss function and thus for f the error function:

f 0.�/ D Ae��2=4 H) f .�/ � erf.�/ � ! 1
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so that vz is negative far from the boundary; everything happens as if the boundary
layer “breathes” the exterior fluid.

4.4 Some Classic Examples

We continue our tour of flows with incompressible viscous fluids by a short review
of the very classic examples, which are either very simple solutions of the Navier–
Stokes equation or just very common flows.

4.4.1 Poiseuille’s Flow

4.4.1.1 Stationary Regime

One of the simplest cases of steady flows is that of a viscous fluid in a very long
cylindrical pipe. In this case the velocity has just one component that is parallel to
the pipe axis and which we identify to the z-axis. We also assume that the flow is
axisymmetric. These two symmetries imply that the velocity field may be written as
v D v.r; z/ez. Using mass conservation, we find that @v=@z D 0 so that v D v.r/ez.
This velocity field belongs to the class of plane-parallel shear flows: it has just
one component, which varies in a direction perpendicular to it. As a consequence,
the velocity gradient is orthogonal to the velocity itself and thus the nonlinear term
.v � r/v is zero. The momentum equation reads

�rp C 
�v D 0

and we find Stokes equation again. We note, however, that in this case the Reynolds
number is not necessarily small. If we project this equation along er and ez we find
that:

@p

@r
D 0 and

@p

@z
D 


r

@

@r

�
r
@v

@r

�

The pressure is therefore independent of r and if we differentiate the second
equation with respect to z, we see that the pressure gradient is necessarily constant.
We call this gradientGp and integrate the equation of v, which leads to

v.r/ D �Gp
4

.R2 � r2/ (4.48)
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where the constants of integration have been chosen so that v.0/ is finite and v.R/ D
0. Solution (4.48) is Poiseuille’s flow.5 The velocity profile is parabolic. We see in
this expression that the flow is in the opposite direction to the pressure gradient. The
fluid flows from the high pressures toward the low pressures.

Such a velocity profile may also be found for the laminar flow of a viscous fluid
between two infinite flat plates staying at a distance d from each other. If a pressure
gradientGp is set up along, say, the x-axis, then

vx.z/ D �Gp



z.d � z/

which is also a parabolic profile with a maximum velocity of z D d=2.

4.4.1.2 Transients to a Poiseuille’s Flow

We shall now briefly examine the way the Poiseuille flow sets up. For this, we
consider two situations. The steady flow inside a pipe but close to the inlet, and
the transient flow occurring in an infinitely long pipe when a pressure gradient is
abruptly set up.

• When a viscous fluid enters a pipe, the Poiseuille flow is not immediately
set up, especially if the Reynolds number is large. Indeed, at large Reynolds
numbers, a boundary layer appears. Such a layer is very similar to the one
described by Blasius’ equation. It thickens as the square root of the distance to
the entrance as illustrated in Fig. 4.5. When the thickness of the layer has reached

z

r

Boundary layers

Fig. 4.5 Boundary layers at the inlet of a cylindrical pipe

5Sometimes called the Hagen–Poiseuille flow. Hagen studied it in 1839 and Poiseuille in 1840.
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the radius of the pipe, Poiseuille flow is almost established. Using the results of
Blasius boundary layer, we can estimate the distance from the entrance at which
Poiseuille flow appears. The thickness of the layer is given by

e D Dp
Re

p
z

In this expression,D is the diameter of the pipe. From the boundary layer theory,
we know that the boundary layer thickness scales like D=

p
Re, so that using

the result of the Blasius flow we find the above expression (which only gives an
order of magnitude). We thus see that Poiseuille flow appears at a distance from
the entrance which is typically Re=2 times the diameter.

– We now consider the case of an infinite pipe in which a pressure gradient is
suddenly set up. Such a situation occurs when one rapidly opens a tap or a sluice
gate. In this case, the velocity field evolves according to

@v

@�
D �Gp C Re�1 1

r

@

@r

�
r
@v

@r

�

If we solve this equation numerically, we find a result similar to that of Fig. 4.6. In
this figure we clearly see the boundary layers at early times and their progressive
diffusion towards the interior up until the formation of the parabolic profile.

Fig. 4.6 Time evolution of the velocity and vorticity during a transient leading to the Poiseuille
flow between two plates. The equation @v

@�
D � @p

@x
C @2v

@z2 with @p=@x D �1 has been integrated
numerically, giving the velocity while vorticity is !y D @v=@z
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4.4.1.3 Generation of Vorticity

The set-up of Poiseuille flow in the foregoing examples comes from a single
phenomenon: the diffusion of vorticity from the walls. The case of the time evolution
is very clear: just after the pressure gradient is set up, at t D 0:001, vorticity is zero
everywhere except near the bounding planes. As time passes, it diffuses slowly to
the interior until the steady state is reached. This shows the key role played by the
no-slip boundary conditions in the generation of vorticity. These conditions prevent
the flow from remaining irrotational.

In the other example, vorticity also diffuses from the walls, but it is simultane-
ously advected by the main stream. These two effects combine, and give birth to the
square root law that we met in analysing the Blasius layer. Indeed, the diffusion of
a quantity proceeds with the square root of time (see the discussion of the diffusion
equation in the maths complements) : if ı is the distance to the wall at which
the vorticity takes a given value, then ı / p

t . But t is such that z D Vt; thus
ı / p

z=V . We thus find again the square root law of Blasius boundary layer. It is a
consequence of advection and diffusion acting simultaneously.

4.4.2 Head Loss in a Pipe

When we studied the motion of perfect fluids, we introduced the notion of head
losses which we connected to energy dissipation. We are now in a position to
estimate these losses in some simple cases.

4.4.2.1 Regular Head Losses

We begin with the case of the Poiseuille’s flow of an incompressible fluid. We can
easily calculate the head loss between two points separated by a distance L and
belonging to the same streamline. Since the kinetic energy is constant along each
streamline (this is mandatory because of mass conservation and incompressibility),
the loss of mechanical energy P C 1

2
�v2 comes from the pressure gradient Gp .

Thus, over a distance L, the loss is GpL; the head therefore decreases linearly in
the downstream direction. One says that the head loss is regular.

More quantitatively, if the volume flux in the pipe is Q and the volumic
mechanical energy is Em.x/, x being the coordinate along the streamline, the power
dissipated between the two points is just:

D D .Em.x/ � Em.x C L//Q
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SinceEm D 1
2
�v2CP and since the velocity does not depend on x, we find thatD D

LGpQ. We may verify that this expression also comes out of a direct calculation of
the viscous dissipation, and that D does not depend on the velocity profile inside
the pipe, but just on the pressure gradient.

4.4.2.2 Singular Head Losses

A B

Let us now imagine the case of a pipe flow at the place where the pipe’s cross section
abruptly increases, just as shown in the above figure. Such a change in the pipe,
provokes the separation of streamlines from the wall and gives birth to a jet. Further
downstream, this jet reconnects to the wall of the pipe. In between, we find a region
of “dead water” where recirculation vortices stand. The flow is quite complicated
there, but an evaluation of the losses and gains of momentum, between the upstream
and downstream sides, allows us to find out the head loss due to this singularity of
the cross section. Such kinds of head losses are called singular. Other examples of
singularities are pipe junctions, pipe bends, etc.

To understand the effect of the abrupt change of pipe section, we consider a fixed
control surface (shown with dashed lines in the figure). The difference between the
in and out momentum flux is compensated by the pressure difference in A and B .
In B the pressure is uniform in the cross section since streamlines are all parallel
to the pipe boundaries (see Sect. 3.2.2), however in A this is less obvious. In fact it
is almost uniform there also. The reason is similar as for B: in a cross section of
the jet, pressure does not vary because of its almost parallel streamlines; it is equal
to the one just outside it. Thus, provided the pressure is constant in the dead water
region (this is approximate of course), we may assume that the pressure is constant
all over the section in A. Thus we write

.PA � PB/SB D �V 2
BSB � �V 2

ASA

But since the volume flux is conserved, VASA D VBSB , and thus we get

PA � PB D �VB.VB � VA/ (4.49)
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This result is sometimes called Bélanger’s Theorem. We show now that some
energy is lost in the crossing of the enlargement; for this we calculate the difference

� D .PA C 1

2
�V 2

A/� .PB C 1

2
�V 2

B/ :

From the preceding formula we get

� D 1

2
�.VA � VB/2 > 0 (4.50)

This difference is thus always positive: there is always a head loss due to the sudden
change of cross section.

We examined here the case of an abrupt enlargement of the cross section; in the
opposite case of a cross section narrowing abruptly, some head loss also exists but
not as large. This is because no jet forms, so that recirculating vortices are much
smaller.

4.4.3 Flows Around Solids

Flows around solids constitute a wide class of flows with numerous applications.
They are sometimes called external flows to underline the differences with pipe
flows which are therefore internal flows. We shall describe these kinds of flows
with the vorticity field, considering examples with increasingly high Reynolds
numbers.

When the Reynolds number is small compared to unity, vorticity fills the whole
space, although decreasing like 1=r2 as shown by (4.19) in the case of the sphere.
When the Reynolds number is large compared to unity, we have seen that it is
confined inside the boundary layer. However, this confinement is not complete: the
boundary layer always separate somewhere on the downstream side of the solid and
forms the wake. Thus, far from the solid, the vorticity may be found in the wake
only.

When we discussed Stokes’ equation in Sect. 4.2.1, we noticed the symmetry
of the solutions between upstream and downstream sides. We observed that the
nonlinear terms break this symmetry. Here, we see that this symmetry breaking
actually occurs through the raise of the wake on the downstream side.

The shape of a wake much depends on the Reynolds number. In Fig. 4.7, we see
that the wake consists of two recirculating vortices. When Re & 50, these vortices
separate from the solid and form a vortex streak also called von Kármán streak (see
Fig. 4.8). Finally, if Re & 1000, the wake becomes turbulent (e.g. Fig. 4.9).
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Fig. 4.7 A glimpse at unsteady recirculating vortices behind a cylinder at Re� 330 (photo of the
author)

Fig. 4.8 Vortex street in the wake of Juan Fernandez islands imprinted in the clouds (Landsat 7
image, NASA)

Fig. 4.9 Turbulent wake behind a cylinder at Re=2000 (ONERA photograph in Werlé and Gallon
1972).
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The computation of such flows is solely possible with a direct numerical
resolution of the Navier–Stokes equation (together with mass conservation) and only
when the Reynolds number is not too large (presently less than a few thousands).
Such flows are extremely complex.

4.5 Forces Exerted on a Solid

When the flows are known, the stresses they exert on the boundaries can be
computed. We therefore continue our investigations on viscous fluids by a look at
forces that they may apply on solid bodies.

4.5.1 General Expression of the Total Force

The total force exerted on a solid by a viscous fluid flowing around it is the sum of
all the stresses applied to its surface, namely

F D
Z
.S/

Œ��dS

where the surface element dS is directed outside the solid.
To illustrate this formula we take the simple example of Poiseuille flow for which

we have an explicit expression of v. In this case, the expression of Œ�� is

Œ�� D
0
@ �p 0 


@vz
@r

0 �p 0



@vz
@r

0 �p

1
A

now dS D �2�Rdzer since the surface must be oriented towards the fluid which
exerts the stress. The resultant force is therefore

F D �
Z ˇ̌̌
ˇ̌
ˇ̌
�p
0





@vr
@z

�
R

dS D �
2�RL

�
@vz

@r

�
rDR

ez

where L is the length of the tube and R its radius. But


@vz
@r

�
R

D GpR=2
 so that

the fluid entrains the tube with a force F D ��R2GpLez in the same direction as
the flow. We observe that viscosity has disappeared from the expression of the force
which means that this force can be obtained without knowing the details of the flow,
simply by an integral balance (see exercises).
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4.5.2 Coefficient of Drag and Lift

The expression of the force exerted on a solid is rarely accessible by direct
calculation, in particular when the Reynolds number is large compared to unity.
It is then necessary to resort to numerical calculation and/or to modelling (if
there is turbulence). However, even if we totally ignore the form of the flow it is
always possible to connect this force, may be just dimensionally, to the fundamental
quantities of the flow. This is why one introduces non-dimensional coefficients
which concentrate our ignorance about the flow.

When the Reynolds number is large, the pressure field due to the inertia of the
fluid is the main source of stresses exerted on a solid moving in a fluid. When we
studied the motion of perfect fluids, we saw that pressure at an upstream stagnation
point was 1

2
�v2 (also called dynamic pressure ); multiplying this pressure by a

surface typical of the solid, we get an order of magnitude for the force. This may be
expressed in the following way:

F D 1

2
�V 2

ˇ̌
ˇ̌
ˇ̌
SxCx
SyCy
SzCz

where � is the density of the fluid, V the velocity of the solid, and Sx; Sy and Sz are
the surfaces projected on planes perpendicular to each axis (see Fig. 4.10).

If the solid moves along Ox, Cx is called drag coefficient,Cz lift coefficient, while
Cy , rarely utilized, could be called coefficient of lateral lift.

These coefficients depend on the shape of the body and on the Reynolds number:
a well-shaped body has a smaller Cx than an ill-shaped one. When the Reynolds
number is very large (& 106), these coefficients are almost constant.

The dependence on the shape of a body is most easily shown with the case
of a wing. In this example, the coefficients much depend on the incidence of the
wing: for small values the lift increases with the sine of this angle. But if this angle
exceeds some critical value, the lift drops abruptly: the boundary layer separates
from the wing near the leading edge. Streamlines are no longer curved and the
resulting pressure drop, which is responsible of the lift, disappears. In addition, the
drag strongly raises: this is known as the wing stall. This situation is illustrated in
Fig. 4.11.

4.5.3 Example: Stokes’ Force

To conclude this section, we examine the case of the sphere in uniform motion in a
viscous fluid when the Reynolds number is very small. The solution that we obtained
in Sect. 4.2.3 allows us to calculate the expression of the resultant force. This force
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X

Z

Sx

Sz
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Y

Fig. 4.10 Schematic views of the various projections of a solid on a plane

Fig. 4.11 Flow around an inclined plate at stall ( c� ONERA photograph, Werlé 1974)
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expresses as

F D
Z
.S/

Œ��erdS D
Z
4�

.�rr cos � � �r� sin �/R2 sin �d�d�ez

where we have used the symmetry of the flow around Oz. The boundary conditions
on the sphere allow us to write:

�rr.R/ D �p.R/ and �r� .R/ D 


�
@v�
@r

�
rDR

By using the solution (4.18) and after evaluation of the integrals we get

Fz D 6�
RU (4.51)

which is the expression of Stokes’ force. This formula may be used in various ways,
but an interesting one is the measurement of the dynamic viscosity of Newtonian
fluids. Indeed, if we let a ball falling in a viscous fluid, provided its radius is small
enough, its velocity quickly reaches a constant value. This value results from the
balance between the weight (minus the buoyancy force) and the viscous friction
(Stokes force). The result is that dynamic viscosity is given by


 D .m �mf /g=.6�RV /

where V is the velocity of the falling ball, m is its mass and mf the mass of the
displaced fluid. g is the local gravity. Since Stokes’ formula is valid only at very
low Reynolds number, it is necessary to check that this condition is verified once
the viscosity is determined. For instance, a small glass ball, weighing 0.02 g, left
in glycerin, falls with a constant speed of 1 cm/s. This corresponds to a Reynolds
number 	0.04. However, if the same experiment is made with water, we would
expect, from Stokes formula, a final velocity of 10 m/s and a Reynolds number of
20,000, which is certainly not consistent with the use of Stokes equation.

From Stokes formula, we may also compute the drag coefficient of a sphere at
low Reynolds numbers. We find

Cx D 6�
RU
1
2
�U 2�R2

D 24

Re

using a Reynolds number based on the diameter of the sphere.
Thus, the Cx coefficient decreases like the inverse of the Reynolds number. At

infinite Reynolds number it is zero which is reminiscent of d’Alembert’s paradox,
but in this limit, again, Stokes’ formula is not valid!

The variations of the sphere’s Cx with Reynolds number has been well studied
experimentally. Figure 4.12 reproduces the curve derived from experiments like in
Fig. 4.13. We see the decrease in 1/Re for the small numbers, then a plateau and
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Fig. 4.12 Variation of the Cx coefficient of a sphere with the Reynolds number (solid line). The
dashed line shows the law Cx D 24=Re valid at small Reynolds numbers

Fig. 4.13 View of the turbulent wake of a sphere at Re = 15,000 ( c� ONERA photograph,
H. Werlé)
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an abrupt jump which correspond to the transition of the boundary layers towards
turbulence. It is usually admitted that beyond this value Cx remains constant.

4.6 Exercises

1. Find the expression of the force exerted by a Poiseuille flow in a cylindrical pipe
using an integral balance. L is the length of the pipe, R its radius and Gp the
applied constant pressure gradient.

2. Lubrication layer: show that if the solid inclination is very small, i.e. that h1 D
h2.1C "/, then

Fdrag ' h2

3`
Flift

Compute the force needed to push a solid of 103 kg at constant speed on an oil
film 1 mm thick if the length of the contact surface is 1 m (the contact surfaces
are assumed to be perfect planes).

3. Flow of a viscous fluid on a slope

h
g

α

x

z

The fluid layer, as shown in the above figure, meets free-slip boundary conditions
on the top plane and no-slip ones on the bottom plane. The planes make an angle
˛ with the horizontal. The fluid is incompressible and of kinematic viscosity �.
The flow is steady.

(a) Determine the velocity profile assuming that v D V.z/ex .
(b) Find the volume flux through a cross section S.

4. The Taylor–Couette flow or cylindrical Couette flow
We consider a viscous fluid contained between two rotating cylinders of radiiR1
and R2, respectively. Their angular velocity is ˝1 and˝2.
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(a) We look for a solution like v D v.s/e' . What are the symmetries of this
solution? Show that v.s/ is the solution of a linear equation. Solve it and
give the solution verifying the boundary conditions.

(b) What is the torque exerted by the interior cylinder on the outer one.
(c) How can we measure the viscosity of a fluid with such a device?

5. Falkner–Skan equation: We take the Prandtl equations of the laminar boundary
layer (4.37), but we look for solutions more general than the Blasius ones. We
set Qu0;x D U.x/f .�/ and Qu1;z D V.x/g.�/, where � is still the self-similarity
variable and U.x/ the x-component of the velocity at infinity.

(a) Give the expression of @p0=@x as a function of U.x/.
(b) Show that the existence of such solutions implies that U.x/; V .x/ and b.x/

verify:

2Ubb0 D c1; U 0b2 D c2 and Vb D c3

where c1; c2; c3 are constants.
(c) Derive the general form of U.x/ and b.x/.
(d) Show that if one chooses c1=2C c2 D 1 (why is that always possible?), then

F D R
fd� verifies Falkner–Skan equation:

F 000 C FF00 � 2m

mC 1
.F 02 � 1/ D 0 (4.52)

where m is a constant to be related to c1; c2; c3.
(e) For which value of m is the boundary layer thickness constant? How can we

find the Blasius equation again?

Further Reading

The matter of this chapter belongs to the very base of Fluid Mechanics and therefore
may be found in all the books aimed at introducing Fluid Mechanics; for instance,
Batchelor (1967), Faber (1995), Guyon et al. (2001), Landau and Lifchitz (1971–
1989), Paterson (1983), Ryhming (1985, 1991).
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Chapter 5
Waves in Fluids

5.1 Ideas on Disturbances

Disturbances play an important role in Physics and notably in Fluid Mechanics.
Indeed all flows in Nature are constantly subjected to perturbations of various
origin: thermal noise, variations of boundary conditions, etc. If the flow is stable,
these disturbances are always damped: otherwise, some of them grow, up to the
disappearance of the initial flow replaced by, perhaps, more stable one. The study of
the stability of a flow therefore begins with the study of perturbations. However,
before addressing the case of flow stability in the next chapter, we shall first
concentrate on the simplest manifestation of disturbances, namely the waves. Their
existence is indeed the first evidence that an equilibrium (or a steady state) has been
slightly perturbed.

5.1.1 Equation of a Disturbance

Let us begin with the simple case of a disturbance affecting the steady flow V of an
incompressible fluid. The fluid is in a domain D delimited by a solid wall @D on
which V D 0. The motion is generated by a force f. The equations of the original
steady flow are simply

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�V � rV D �rP C 
�V C f

r � V D 0

V D 0 on @D

(5.1)
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Given that .ıP; ıv/ is a disturbance of this flow, the total field .P C ıP;V C ıv/
must also be a solution to the equations of motion

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

�


@.VCıv/

@t
C .V C ıv/ � r.V C ıv/

�
D �r .P C ıP /C 
�.V C ıv/C f

r � .V C ıv/ D 0

V C ıv D 0 on @D

(5.2)

We develop these terms and subtract (5.1), which leads to the following equations
for the disturbances:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

�

�
@ıv
@t

C
I‚ …„ ƒ

V � rıv C
II‚ …„ ƒ

ıv � rV Cıv � rıv
�

D �rıP C 
�ıv

r � ıv D 0

ıv D 0 on @D

(5.3)

Terms I and II show that the disturbances do not obey the same equations as the
original flow. Their evolution is indeed a function of the flow on which they appear
and this dependence is the result of the nonlinearities of the original equations.

5.1.2 Analysis of an Infinitesimal Disturbance

The study of disturbances is done in successive steps. The first of these consists
in analyzing the case of disturbances whose amplitude is infinitesimal: indeed, for
these disturbances the equations are linear and therefore easy to resolve (in theory!).
Two situations can thus occur: either we are seeking the evolution of disturbances
in a homogeneous region of the flow (whose properties are independent of the local
coordinates) and we make an analysis using plane waves, also called local analysis,
or we are facing important spatial variations and we must do a global analysis (this
is the case if the boundary conditions play a role).

5.1.2.1 Local Analysis

Local analysis is the easiest one because the form of the disturbances is known in
advance. Let us consider the system (5.3); by linearizing it, we have



5.1 Ideas on Disturbances 151

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

�

�
@ıv
@t

C V � rıv C ıv � rV
�

D �rıP C ��ıv

r � ıv D 0

ıv D 0 on @D

(5.4)

for which we seek a solution of the plane wave type, namely

ıv D ıv0 ei.!tCk�r/ and ıP D ıP0 e
i.!tCk�r/ (5.5)

where k is the wave vector. Observing that the operators r and @
@t

are transformed
in the following manner:

r ! ik and
@

@t
! i! ;

we immediately get the system

8<
:
i.! C k � V/ıv0 C .ıv0 � r /V D �ıP0ik � �k2v0

k � ıv0 D 0

(5.6)

The solution (5.5) and the relation (5.6) that follows are valid only if V and rV are
almost constant. This is obviously not the case in general: but if we limit ourselves to
a small area of the flow, then these quantities are almost constants and the derivation
that we did does make sense. This is the reason for which it is called local analysis.
It is valid only if the wavelength � of the disturbance is very small compared to the
scale of the variations of V or rV; in other words

�  Min

� kVk
krVk ;

krVk
kr 2Vk

�
(5.7)

Let us continue our analysis and give a matrix form to relation (5.6), namely

2
664
Dxx Dxy Dxz ikx
Dyx Dyy Dyz iky
Dzx Dzy Dzz ikz

kx ky kz 0

3
775
0
BB@
ıv0;x
ıv0;y
ıv0;z
ıP0

1
CCA D 0 (5.8)

This system has a non-zero solution if the determinant of the matrix is vanishing.
Since each componentDij of this matrix is a function of k and !, we finally get the
dispersion relation of the waves:

detŒD� D D.!;k/ D 0 (5.9)
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We note that the dispersion relation is an implicit relation between! and k. We shall
see in the next chapter that this form of the relation has important consequences as
far as stability is concerned.

5.1.2.2 Global Analysis

When one cannot neglect the boundary conditions or the heterogeneities of the
disturbed system, one cannot impose the plane wave form to the disturbances. Their
partial differential equations (5.4) need to be solved directly.

If the solution V, which we analyse, is stationary, we can look for disturbances
in the form

ıv.r; t/ D v�.r/e�t (5.10)

Such a solution is called an eigenmode of the system. It is associated with the
eigenvalue �, which is a complex number in general. The search for the eigenmodes
of a system is also called modal analysis.

If we note that the system (5.4) may be written

� L.ıv/ D �ıv in D

ıv D 0 on @D
(5.11)

the search of the eigenmodes is equivalent to finding the eigenfunctions of the
operator L verifying the boundary conditions. Simultaneously, we determine the
associated eigenvalues which give the point spectrum (the set of eigenvalues) of
the operator L. If the operator is compact1 then the spectrum is discrete and each
eigenvalue can be identified by a triplet of quantum numbers .`;m; n/.

The resolution of such a problem is difficult in general and must be carried out
numerically. In the examples that we shall consider, we shall combine the local
analysis and the global analysis so as to reduce the partial differential equation to
ordinary differential equations. This is possible when the system owns symmetries.

5.1.3 Disturbances with Finite Amplitude

When the amplitude of the disturbances cannot be neglected, the problem becomes
very complicated because of the nonlinearities of the equations. Several strategies
are then possible.

1To say it in a simple way, compact (linear) operators are like matrices of finite dimension although
the space on which they act is a space of functions and therefore of infinite dimension.
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• The amplitudes are finite but small: we can develop the solution into powers of
the amplitude.

• Several, very different, scales intervene in the problem and we are able to make
a multi-scale expansion of the solution.

An example of each of these strategies will be given in Chap. 7 using the case of
thermal convection.

5.1.4 Waves and Instabilities

In the following we analyse the simple case of disturbances that are neither amplified
nor damped (or very little). They are waves which freely propagate in the fluid.
When an amplification appears, ones speaks rather of an instability, the study of
which is postponed to the following chapter.

5.2 Sound

5.2.1 Equation of Propagation

Sound waves are the simplest and the most frequent of the disturbances which
propagate in a fluid. In order to study them, we assume that the undisturbed fluid is at
rest, i.e. V D 0. With regard to (5.3), we must take into account the compressibility
of the fluid: sound does not exist in an incompressible environment!

We make the following expansion:

8̂
<̂
ˆ̂:

P D P0 C ıP

T D T0 C ıT

� D �0 C ı�

v D 0 C ıv

(5.12)

We assume moreover that the fluid be perfect and initially at constant pressure,
density and temperature. By neglecting all the nonlinear terms we get

@ı�

@t
C �0r � ıv D 0 (5.13)

from the equation of continuity,

�0
@ıv
@t

D �rıP (5.14)
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from the equation of momentum and

@ıs

@t
D 0 (5.15)

from the equation of entropy. This last equation can be used immediately. Indeed,
this equation implies ıs D f .x; y; z/; but at t D 0 (or before the disturbance starts)
ıs D 0, and therefore the disturbance stays isentropic. We can thus write a relation
between the fluctuations of � and P:

ıP D
�
@P

@�

�
s

ı� (5.16)

where the partial derivative of the pressure is taken at constant entropy. Now, if we
take the time derivative of (5.13) and combine it with (5.14) and (5.16), we get the
following wave equation:

�ı� � 1

c2s

@2ı�

@t2
D 0 with c2s D

�
@P

@�

�
s

(5.17)

cs is naturally identified with the speed of propagation of the disturbance. We easily
verify by exercise that ıP and ıv obey the same wave equation.

If the gas is ideal, the speed of sound can be expressed as

c2s D �P0

�0
D �R�T0 (5.18)

where � andR� are defined in Sect. 1.7.1 This equation shows that, for an ideal gas,
cs depends only on temperature. Let us calculate an order of magnitude of the speed
of sound in the air at 300 K. For � D 1:4, R� D 8:314=0:029 J/kg and T0 D 300 K,
we find cs D 347 m/s. We observe that sound propagates faster in hot gases and
with small molecular mass. In hydrogen at 300 K, M D 0:002 kg/mole, the sound
speed is cs D 1321m/s thus almost four times faster than in the air.

The sound speed is of the same order of magnitude as the rms2 velocity of the
molecules of the gas. Pressure is indeed due to collisions between molecules and
pressure disturbances cannot go much faster than the molecules themselves!

5.2.2 The Dispersion Relation

In the medium that we have chosen the sound waves have a very simple dispersion
relation; assuming

.ıP; ı�; ıv/ / exp.i!t � ik � r/

2For “root mean square”; this is the typical dispersion of molecules velocities in a gas.
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we easily obtain the dispersion relation

!2 D c2s k
2 (5.19)

which shows that the waves are not dispersives since the phase velocity !=k is
independent of k.

Let us now consider the orientation of the velocity field associated with the wave,
and the wavevector k. We take back (5.14) which we transform into

�0i!ıv D ikıP (5.20)

This last relation shows that the velocity vector is parallel to the wave vector. One
says that the wave is longitudinal.

5.2.3 Examples of Acoustic Modes in Wind Instruments

The study of sound waves naturally leads to the vast domain of acoustics. We shall
just outline the subject by examining the acoustic oscillations associated with wind
instruments.

5.2.3.1 The Flute

The flute is one of the oldest instruments and its principle is one of the simplest.
It is based on the oscillation of an air column in a cylindrical pipe. In order to
study this oscillation, we neglect the viscosity of the air and assume its motion to be
one-dimensional. Taking the axis of the tube parallel to Ox, with the origin at one
extremity and the other at x D L, we write that the velocity, the pressure, etc. are
the superimposition of two plane waves propagating in opposite directions, namely

vx D Aei.!t�kx/ C Bei.!tCkx/

ıp D A0ei.!t�kx/ C B 0ei.!tCkx/

At the extremities of the tube, the pressure is fixed (it is the atmospheric pressure),
so that the pressure disturbance vanishes there.3 These two boundary conditions
allow us to write

ıp D 0 at x D 0 H) A0 D �B 0

ıp D 0 at x D L H) A0e�ikL CB 0eikL D 0

3This is an idealization of course. In reality the fluctuations of pressure do not exactly vanish, but
their amplitude is very small compared to the one inside the tube.
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from which comes the relation

sin kL D 0 ” k D n�

L
; n 2 N (5.21)

(5.21) gives the wavelength of the acoustic modes of a fluid in a cylindrical cavity
open at both ends, namely

� D 2L

n

The reader has certainly observed that we just determined an eigenmode of the
air column since we took the boundary conditions into account. This example shows
the utility of the local analysis, which, in some cases, is easily extended to the global
one.

The frequency F of these modes is immediately obtained from the dispersion
relation ! D kcs with ! D 2�F . We have therefore

Fn D ncs
2L

(5.22)

Let us apply this result to a flute in which the lowest note (n D 1) is the C at
261.6 Hz. Its length should be (if cs D 347 m/s) LD 66:3 cm, to be compared
to the length of a modern transverse flute in C which is 67 cm. We also note that
the next harmonic, n D 2, vibrates at a frequency exactly two times higher than the
fundamental n D 1. Hence, if the player is able to excite the second harmonic, a new
set of notes with a frequency twice higher, i.e. at the next octave of the fundamental,
is available.

5.2.3.2 The Clarinet

The clarinet is another interesting instrument because it uses different boundary
conditions: one of the extremities is closed and we must set the velocity to zero
there.4 We have

ıp D 0 at x D 0 H) A0 D �B 0

ıv D 0 at x D L H) Ae�ikL C BeikL D 0

Now, additional relations between A, A0, B and B 0 are necessary. These relations
are given by (5.20), thus

A0 D �0csA and B 0 D ��0csB

4This doesn’t imply that ıp D 0 because (5.20) doesn’t apply to a superimposition of plane waves.
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which implies that A D B . Moreover,

cos kL D 0 ” k D .2nC 1/�

2L
; n 2 N (5.23)

The frequencies of the different harmonics are thus

F0 D cs

4L
; F1 D 3cs

4L
; : : : ; Fn D .2nC 1/cs

4L
; : : :

Let us apply this result to a real instrument like the B-flat clarinet. The fundamental
is the D at 146.8 Hz. The calculation of its theoretical length is 59 cm to be compared
to the real length of 60 cm. Contrary to the flute, the first harmonic (n D 1) is not the
next octave, but a frequency that is three times the fundamental one (n D 0), namely
the A at 440 Hz (for the player this is an octave plus a fifth or a perfect twelfth).

Because of this dispersion relation of the modes, this instrument is necessarily
more complex to make. Other examples, like the oboe and the bassoon are studied
in the exercises.

5.3 Surface Waves

A second category of very common waves in our environment is that of surface
gravity waves, namely all the waves which agitate the surface of water planes.
Contrary to sound waves, these waves are very dispersive, i.e. their phase and group
velocity strongly depends on the wavelength. We would have a hard time making
music if sound waves behaved that way!

5.3.1 Surface Gravity Waves

In order to understand the way in which these waves propagate, we must return to the
boundary conditions ruling a free surface. We have seen in Chap. 1 (Sect. 1.8.1.2)
that the surface obeys the kinematic condition

@S

@t
C v � rS D 0 (5.24)

where S D Cst is the equation of the given surface. To this condition we add
the dynamic one, which imposes the continuity of the stress when we cross the
surface. As we neglect viscosity, this last condition amounts to the continuity of the
pressure. We shall also neglect the effects of surface tension which will be examined
separately.
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In order to treat this problem we make several simplifying hypotheses: we first
assume that the fluid is incompressible and that its motion is vorticity free. This
latter assumption means that the flow is driven by forces derived from a potential.
To be more precise, we consider the case of an interface between air and water and
simultaneously treat the motion of the two fluids. The equations which govern these
motions are (3.22) and (3.23):

8̂
<̂
ˆ̂:

�˚w D 0

@˚w

@t
C 1

2
v2w C Pw

�w
C gz D Cst

(5.25)

8̂̂
<
ˆ̂:

�˚a D 0

@˚a

@t
C 1

2
v2a C Pa

�a
C gz D Cst

(5.26)

where the indices a and w refer to air and water respectively. We first look for one-
dimensional solutions that propagate in the x-direction:

˚ D ˚.z/eikx�i!t (5.27)

Laplace’s equation then implies

@2˚

@z2
� k2˚ D 0 H) ˚ D Aekz C Be�kz (5.28)

5.3.1.1 In Deep Water

We assume, as a first step, that the air occupies the upper half-space z � 0 while the
water occupies the lower half-space z � 0. In this case

˚a D Aae
�kz and ˚w D Awe

kz (5.29)

Let us now consider the boundary conditions. The surface verifies an equation of
the form

S.r; t/ D z � zs.x; t/ D 0

from which we derive that rS D ez � @zs
@x

ex .
If we now assume that the amplitudes of motions are small, we find from (1.63),

that

vz D @zs
@t

at z D 0 (5.30)
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neglecting second order terms. Finally, on the surface the velocity potential verifies

@˚

@z
D @zs
@t

at z D 0 (5.31)

as given by (5.24) for small amplitude motions. We apply this relation to the air and
the water and thus

k˚w.0/ D �i!zs D �k˚a.0/ (5.32)

which shows incidentally that Aw D �Aa. We now use the linearized equation of
dynamics and the second boundary condition (continuity of pressure). At z D 0 we
have

� �i!�w˚w C �wgzs C ıPw D 0

�i!�a˚a C �agzs C ıPa D 0
(5.33)

by subtracting these two equations and by using (5.32) together with the fact that
ıPw D ıPa, we get the sought-after dispersion relation:

!2 D �w � �a

�w C �a
gk (5.34)

If we neglect the influence of the air we simply have:

! D p
gk (5.35)

We easily derive from this expression the phase and group velocities, namely

v' D !

k
D
r
�w � �a

�w C �a

g

k
; vg D @!

@k
D 1

2
v' (5.36)

These two relations show that the waves are dispersive: the waves with long
wavelength are the fastest.

5.3.1.2 In Shallow Water

If the depth of the water is not infinite (and especially if it is smaller than the
wavelength of the waves), the dispersion relation is much simplified.

Taking the bottom into account, which we assume to be flat and located in z D
�H , we have to modify the solution (5.28) so that the boundary condition:

vz D 0 at z D �H
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is verified. We easily find that it implies that

˚w.z/ D 2Awe
�kH coshŒk.z CH/� D A0

w coshŒk.z CH/�

Using this relation at the surface, it turns out that

A0
wk sinh.kH/ D �i!zs D �kAa (5.37)

which replaces (5.32). The equation of pressure allows us, after minor calculations,
to find the new dispersion relation

!2 D .�e � �a/ tanh.kH/

�e C �a tanh.kH/
gk: (5.38)

If we neglect the density of the air, it simplifies into

!2 D gk tanh.kH/ (5.39)

We find again the foregoing relation, (5.35), when �  H because then kH � 1

and tanh.kH/ 	 1. On the other hand, if we take the opposite case where � � H ,
that is in the case of a shallow layer, then tanh.kH/ 	 kH and the dispersion
relation (5.39) becomes

!2 D gHk2 (5.40)

The phase velocity is

v� D p
gH

identical to the group velocity: the waves are no longer dispersive.
Some example of the use of these results may be found in the list of exercises.

5.3.2 Capillary Waves

When discussing the case of surface gravity waves, we voluntarily ignored the role
of surface tension. We may wonder whether this simplification was justified or not.
In order to evaluate the effects of this new phenomenon, we just need to modify the
dynamic boundary conditions. Indeed, now

Pwater D Pair C �

�
1

R1
C 1

R2

�
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As before we linearize these equations and simplify the problem to two dimensions,
thus R2 D 1. With the linear approximation we have

1

R
D �@

2zs
@x2

(see 12.12 in the complements of Mathematics). This equation allows us to write

Pwater D Pair � � @
2zs
@x2

(5.41)

The relations (5.33) are thus transformed into

� i!.�w˚w � �a˚a/C .�w � �a/gzs C �k2zs D 0 (5.42)

from which we derive the following dispersion relation:

!2 D �w � �a
�w C �a

gk C �k3

�w C �a
(5.43)

which is also written under the form

!2 D gk C �

�
k3 (5.44)

when we neglect the density of the air. In this last relation, we have of course
assumed the depth of the liquid to be infinite (the case of finite depth is proposed
as an exercise). It shows that the effects of surface tension are expected at short
wavelengths. They dominate if

�

�
k3 > gk ” � < �t D 2�

r
�

�g

For water, we find that �t D 1:7 cm. We may observe that when the surface
tension dominates, the waves are also dispersive.

5.4 Internal Gravity Waves

Gravity waves or internal gravity waves (in order to distinguish them from surface
gravity waves) are present in all the fluids that are stably stratified by gravitation
(see Chap. 2 sect. 2.2.3 for a presentation of a stratified fluid). This type of situation
is encountered frequently in our environment. For example, in a lake where the cold
water is found at the bottom and the warm water, lighter, close to the surface. Such a
situation is stable. All disturbances of this equilibrium give birth to waves which are
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the internal waves of gravity. For such waves the restoring force is the buoyancy
force which has a privileged (vertical) direction. Hence, these waves propagate
anisotropically.

In order to get more familiar with these waves, we consider the following
idealized situation: a quasi-incompressible fluid (such as water) is in equilibrium
under the effect of gravitation. Its temperature is supposed to increase in a linear
manner with z (see Chap. 2, sect. 2.2.3). We suppose moreover that the variations
of density associated with the variations of temperature are negligible except those
generating the buoyancy force (this is the Boussinesq approximation that we shall
thoroughly describe in Chap. 7).

Neglecting the effects of diffusion (viscosity and thermal conduction) and the
nonlinear terms, the equations of disturbances are now

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

@ıv
@t

D �1
�
rıp C ı�

�
g

@ıT

@t
C ıv � rT0 D 0

r � ıv D 0

(5.45)

T0 is the temperature of the equilibrium configuration that we assume to vary
linearly with z. We set

T0 D T00 C ˇz with ˇ > 0

If the fluid is a liquid (see 1.60),

ı�

�
D �˛ıT

where ˛ is the dilation coefficient of the fluid.
We are looking for a solution in the form of plane waves, thus setting

ıf D f0 exp.i!t � k � r/;

we transform (5.45) into

8<
:
i!ıv0 D ikp=�C ˛ıT0gez

i!ıT0 C ˇıv0z D 0

k � ıv0 D 0

(5.46)

Taking the dot product of the first equation with k, we find that ipk2 D �˛�ıT0gkz.
We combine this equation with i!ıvz D ikzp=� C ˛ıT0g and i!ıT0 C ˇıv0z D 0,
in order to finally obtain the following dispersion relation:
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!2 D N2
k2x C k2y

k2
(5.47)

where we have set N D p
˛ˇg. N is a frequency, called the Brunt-Väisälä

frequency . Its interpretation is simple: it is the frequency of the oscillations of a
fluid element when it is slightly moved from its position of equilibrium. Often, it is
written in an equivalent manner as

N2 D �g
�

d�

dz

We note that if the density gradient is of the opposite sign (density increases with
height), this frequency is imaginary. This situation corresponds to an instability (the
Rayleigh-Taylor instability—Sect. 6.3.2.1- or thermal convection—Chap.7).

The dispersion relation (5.47) shows that the waves are anisotropic. If � is the
angle between the wavevector k and ez, then (5.47) reads

!2 D N2 sin2 �

This relation clearly shows that the frequency of the wave depends on the direction
of propagation and never exceeds N . In particular, such waves do not propagate
vertically. We can calculate the group velocity

vg D rk ! D N

ˇ̌
ˇ̌
ˇ̌
k2z =k

3

0

�kzks=k
3

D N.k2es � ksk/=k3 D N
k � .es � k/

k3
(5.48)

where we used cylindrical coordinates (es is the radial unit vector). From this
relation, it turns out that vg � k D 0: Energy propagates perpendicularly to the
phase. Such a property, stemming from the anisotropy of the background, is also
shared by inertial waves (see Chap. 8).

We note that these waves are transversal, namely k � ıv D 0. This property is
the consequence of mass conservation r � v D 0 and is shared by all the waves
propagating in an incompressible fluid.

5.5 Waves Associated with Discontinuities

Until now we neglected the nonlinear terms in the equations of disturbances. We just
considered waves of infinitesimal amplitude. However, is this approximation always
relevant? To answer this question we need to estimate the relative importance of
nonlinear terms to linear ones. Linear and nonlinear terms are not unique, forcing
us to be more specific. We shall therefore take the pressure term �rıP as typical
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of the linear part and the inertial one, �.ıv �r /ıv, typical of nonlinear ones. Hence,
nonlinear effects are important when

rıP 	 �.ıv � r /ıv

If the characteristic scale of motion isL (namely the wavelength), then the foregoing
criterion becomes

ıP 	 �.ıv/2

saying that the kinetic energy of the fluctuations is of the order of the pressure
disturbances. If we consider sound waves, from (5.20) it turns out that

!�ıv D kıP H) �v�ıv 	 ıP;

where v� is the phase velocity. The criterion is now

ıv 	 v� (5.49)

Nonlinear effects are therefore important when the velocity of the fluid, associated
with the passing wave, is of the same order as the wave velocity. In fact,
writing (5.49), we introduced a dimensionless number

M D V

V�
(5.50)

which is just a Mach number. The most famous of these numbers is the ratio of the
fluid velocity and the speed of sound. This is the number which is referred to when
one speaks about the Mach number without any precision. The foregoing discussion
shows that it may be defined for any type of waves.

5.5.1 Propagation of a Disturbance as a Function of the Mach
Number

The difference between a flow with M < 1 and a flow with M > 1 is not just
quantitative: it is also qualitative. The propagation of perturbations is very different
in these two cases.

Let us consider a source of low amplitude waves (sound waves or gravity waves
for instance) moving at a speed V while emitting waves that propagate with a phase
velocity c in the fluid. Using a reference frame attached to the source, the space
filled by the fluid appears very differently when the Mach number is changed. If this
number is smaller than unity, waves can reach any point in this space; in the opposite
case they are confined to the Mach cone (see Fig. 5.1). The transition M D 1 defines
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ct

vt

a

Mach cone

Fig. 5.1 The Mach cone formed by a source of periodic perturbations moving with a supersonic
speed

the raise of a partition of space. Now, if we consider the example of a plane flying
at a supersonic speed, air disturbances are of finite amplitude and usually produce a
discontinuity.

These discontinuities are the consequence of the nonlinear evolution of the
waves. In the case of a supersonic flight, the discontinuity is just the supersonic
“bang”, and in other words the shock wave. We shall see below that shock waves
are part of a more general phenomenon which gathers all the waves resulting from
a discontinuity. The other common example is the one of crunching water waves.

5.5.2 Equations for a Finite-Amplitude Sound Wave

The first step needed to study shock waves, is to write down the equations governing
the evolution of a finite-amplitude sound wave. To simplify the matter, we restrict
our discussion to the one-dimensional case. Although much simplified, this model
represents fairly well the formation and propagation of a shock wave in a shock tube
as we shall see below.

The equations of momentum and mass conservation are :

8̂
ˆ̂<
ˆ̂̂:

@�

@t
C @�u

@x
D 0

@u

@t
C u

@u

@x
D �1

�

@p

@x

(5.51)
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In addition, we assume that the gas is isentropic so that p / �� . The sound speedp
�P=� is a convenient variable. If we note that

d�

�
D 2

� � 1
dc

c
and

dp

p
D 2�

� � 1
dc

c

then, (5.51) may be written as

8̂
ˆ̂̂<
ˆ̂̂̂:

�
@

@t
C u

@

@x

�
2c

� � 1
C c

@u

@x
D 0

�
@

@t
C u

@

@x

�
u C 2c

� � 1

@c

@x
D 0

(5.52)

which may be mixed to yield:

8̂
ˆ̂̂<
ˆ̂̂̂:

�
@

@t
C .u C c/

@

@x

�
r D 0

�
@

@t
C .u � c/ @

@x

�
s D 0

(5.53)

where we introduced
8̂̂
<̂
ˆ̂̂:

r D u

2
C c

� � 1

s D u

2
� c

� � 1

(5.54)

called the Riemann invariants.

5.5.3 The Equations of Characteristics

Equation (5.53) are nonlinear and may be difficult to solve. Fortunately, these
are a little simpler and often called quasi-linear equations. They can be solved
qualitatively at least. For this purpose, we use the theory of characteristics. The
reader who may not be familiar with this approach of partial differential equations,
may have a look to Sect. 12.6.2 first.

The first result of characteristics theory to be used is the following. If r and s are
solutions of (5.53), then r is constant along the characteristic curves of equation

dx

dt
D u C c (5.55)
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Fig. 5.2 Schematic view of a
shock tube
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while s is constant on the other characteristic curves

dx

dt
D u � c (5.56)

If the (5.53) were linear, the characteristic curves could be determined directly
from (5.55) and (5.56); the initial conditions completely specify the solution. Here,
u and c are unknown; nevertheless, we shall see that one can determine the shape of
characteristics and understand the evolution of the solutions.

5.5.4 Example: The Compression Wave

We consider the following system: a piston inside a tube (of infinite length) starts
at t D 0 and reach a constant velocity after a time ta. The set-up is schematically
drawn in Fig. 5.2.

Initially, the fluid is at rest: u D 0 and c D c0 on the t D 0 line (see Fig. 5.3). The
characteristics of s have a slope dt

dx D �1=c0 on the x-axis (the t D 0 line), which
they cut (see Fig. 5.3). But s.x; 0/ D �c0=.� � 1/ is constant on the axis at t D 0

and therefore it is constant everywhere in a region of the .x; t/ plane bounded by
the piston trajectory. Using the definition of s on the piston where the gas velocity
is U , we find that

c D c0 C � � 1
2

U > c0 (5.57)

Since the gas is isentropic and ideal c / �.��1/=2, density increases when one gets
closer to the piston.

In the same region we can write the other Riemann invariant as

r D s0 C 2c

� � 1 (5.58)
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Fig. 5.3 Characteristic lines
in the .x; t / plane. The solid
lines show r-characteristics
and the dotted lines show the
s-ones

X

t

Characteristic lines

Piston
trajectory Shock wave

where s0 D �c0=.� � 1/. Thus, we find that characteristics associated with r are
straight lines. Indeed, on its characteristic, r is constant and therefore c is constant
from (5.58). Thus, u is also constant from the definition of r , (5.54). Hence, along
an r-characteristic, u C c is constant showing that these curves are straight lines.

Let us now consider characteristics emitted by the piston. They are straight lines
verifying:

dt

dx
D 1

c0 C �C1
2
U

The slope of these lines decreases with time since U increases. Consequently, the
straight lines will cross somewhere. The function r is then no longer single valued
and a discontinuity appears: the shock forms.

We may estimate the time by which the shock has formed. It is given by the
point where the characteristic emitted at t D 0 (with a slope 1=c0) crosses the one
when the piston reaches its asymptotic velocity after a time ta. The slope is then
1=.c0 C .� C 1/U=2/. We find that in this case the shock forms after a time tc such
that

tc 	 2c0ta

.� C 1/U

Qualitatively, the formation of the discontinuity may be understood in the following
manner: The acceleration of the piston increases the density in its vicinity. Sound
waves move more rapidly in this denser region. A shock appears when the sound
waves emitted in the compressed region overtake the ones emitted at t D 0, leading
to a steepening of the wave front (see Fig. 5.4).

We would infer from the last formula that a shock forms whatever the conditions.
This not the case of course. Indeed, our discussion neglects the dissipative effect as
well as the finite length of the tube. If we still assume the infinite length of the
tube, we may say that the shock will appear only if tc is short enough, shorter that
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Fig. 5.4 Schematic evolution of density during the formation of a shock: note the steepening of
the wave front. Similar shapes may be found for the pressure and temperature

td 	 d2=� where � is the kinematic viscosity of the fluid. Inequality tc < td implies
that

U

ta
>	
c0�

d2

showing that the piston acceleration must be large enough. Let us give a numerical
example to fix ideas: if we take a cylindrical tube with a diameter of 3 cm, filled
with air, then U

ta
& 5 m/s2. Thus, the piston needs to accelerate about half that of

terrestrial gravity.

5.5.5 Interface and Jump Conditions

When the shock is formed, it may be described as a pure discontinuity. Indeed, its
thickness is only a few mean-free paths which may be neglected macroscopically.
However, not all the variables are discontinuous. For instance, the mass flux must
be the same on each side of the shock. Thus, in a frame attached to the shock

�1v1 � n D �2v2 � n (5.59)

where indices 1 and 2 refer to the upstream and downstream quantities. Let us
first give some precisions about the up- and downstream regions. The flow goes
from the upstream to the downstream, of course. The upstream region is the
one of low pressure and supersonic velocity whereas the downstream one is of
high pressure and subsonic velocity. The supersonic region may sometimes be
qualified as “before” the shock since the shock wave may be seen as propagating,
supersonically, in the low pressure region. The foregoing case of the shock tube is
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clear in this respect: the shock wave propagates in a fluid at rest. However, standing
on the shock wave, we would see low pressure supersonic air rushing into the high
pressure subsonic region!

The next interface condition which must be met at a discontinuity demands the
balance of forces. More precisely, the flux of momentum through the shock wave
must compensate the pressure jump. Hence,

p1n C �1v1 v1 � n D p2n C �2v2 v2 � n

Finally, the energy flux must also be continuous, thus

1

2
v21 C h1 D 1

2
v22 C h2

where h is the enthalpy of the fluid. Let us demonstrate this latter relation, where
the reader might wonder why the enthalpy comes into play. For this purpose we
consider a cylindrical control surface whose generatrix lines are parallel to the flow
and the ends of which are on each side of the shock. The energy flux entering the
cylinder is just

.
1

2
v2 C e/�v � n

ˇ̌̌
ˇ
1

In a steady state, it differs from the outgoing flux by the power of forces applied on
this volume. In our case we just need to consider pressure forces and their power
�pv � n. Thus,

.
1

2
v2 C e/�v � n

ˇ̌
ˇ̌
1

� .
1

2
v2 C e/�v � n

ˇ̌
ˇ̌
2

D �pv � nj1 C pv � nj2

After some rearrangements,

.
1

2
v2 C e C p

�
/�v � n

ˇ̌̌
ˇ
1

D .
1

2
v2 C e C p

�
/�v � n

ˇ̌̌
ˇ
2

Taking into account mass conservation, we find that

1

2
v2 C e C p

�

must be continuous; we note that h D e C p=� is just the enthalpy.
Actually, the demonstration could be far shorter if we used Bernoulli theo-

rem (3.7), which shows that

1

2
v2 C h

is constant along a streamline.
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5.5.6 Relations Between Upstream and Downstream Quantities
in an Orthogonal Shock

The foregoing relations are much simpler when the velocity field is orthogonal to
the shock wave. The shock is said to be normal to underline the difference with the
general case of an oblique shock. The conditions are now

8<
:
�1v1 D �2v2
p1 C �1v21 D p2 C �2v22
h1 C v21=2 D h2 C v22=2

(5.60)

They may be used to rewrite the downstream quantities (index 2) as a function of
the upstream ones. Using the upstreamM1 and downstreamM2 Mach numbers, one
may show (see the demonstration at the end of the chapter) that

v2 D v1
.� � 1/M2

1 C 2

.� C 1/M2
1

(5.61)

�2 D �1
.� C 1/M2

1

.� � 1/M2
1 C 2

(5.62)

M2 D M1q
.v1=v2/2 C .� � 1/..v1=v2/2 � 1/M2

1 =2

(5.63)

p2=p1 D 1C 2�

� C 1
.M2

1 � 1/ (5.64)

These relations allow us to determine the state of the fluid after crossing a shock
wave. The upstream flow being supersonic, M1 > 1, we immediately find the
following inequalities:

v2 < v1; �2 > �1; p2 > p1

After crossing the shock wave the fluid slows down and is compressed. Pressure and
density increase. Using (5.60c), which we rewrite

T2 D T1 C v21 � v22
2cp

we also see that temperature increases. Obviously the downstream flow is subsonic
and M2 < 1. This inequality is not clear in (5.63), but becomes as such when this
equation is transformed using the ratio of velocities (5.61). One then finds
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Fig. 5.5 Interaction of a plane shock wave with a cylinder. In (2), (5) and (6), we observe the
evolution of the incident, reflected and refracted shock waves. We also observe (in 5 and 6)
the appearance of a line joining the intersection point of the three waves and the cylinder; this
is a “contact surface” where the pressure is continuous but where there is still an entropy and
temperature jump

M2 D
s
.� � 1/M2

1 C 2

2�M2
1 � � C 1

(5.65)

showing the equivalenceM1 > 1 ” M2 < 1 (Fig. 5.5).
To summarize, when going through a shock wave, a supersonic flow becomes

subsonic and pressure, density, temperature increase. The temperature rise is not
only the consequence of compression, but also that of the strong dissipation which
occurs within the shock wave. Macroscopically, the velocity gradient are infinite
but the volume of the dissipative region is vanishing; one may expect that a finite
dissipation implies an increase of entropy.

Recalling the entropy expression (1.59), we can derive the entropy jump:

s2 � s1 D cv ln.p2=p1/ � cp ln.�2=�1/ D cv ln

�
p2

p1

�
�1

�2

���

We may show that the entropy jump is always positive as expected in a dissipative
process. For this purpose, we first express the entropy jump as a function of M1. It
turns out that

�s D cv ln

"�
1C 2�

� C 1
.M2

1 � 1/

��
.� � 1/M2

1 C 2

.� C 1/M2
1

��#
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Let us use a Taylor expansion of this function in a neighbourhood of the threshold
M1 D 1 up to the third order. Setting " D M2

1 � 1  1, we have

�s D �s.1/C�s0.1/"C�s00.1/
"2

2
C�s000.1/

"3

6
C O."4/

One may show that �s.1/ D �s0.1/ D �s00.1/ D 0 and that

�s000.1/ D 4cv
�.� � 1/

.� C 1/2

hence

�s D cv
2�.� � 1/

3.� C 1/2
.M2

1 � 1/3 C O."4/ (5.66)

This expression shows that the entropy of the fluid increases when passing the shock,
as soon asM1 > 1. However, the jump is very small ifM1 is not very different from
unity. This leads to a classification of shocks into weak and strong ones (see below).

Let us now show that the entropy jump is an increasing function of the Mach
number. Setting m D M2

1 , we compute ds=dm. We have

1

cv

ds

dm
D d

dm

�
ln

�
1C 2�

� C 1
.m � 1/

�
C � ln

�
.� � 1/mC 2

.� C 1/m

��

1

cv

ds

dm
D 2�

� C 1C 2�.m� 1/ � 2�

.� � 1/m2 C 2m

D 2�.� � 1/.m � 1/2
m.� C 1C 2�.m� 1//..� � 1/mC 2/

Thus ds=dm > 0 when m > 1. We also note that if M1 goes to infinity, �s also
tends to infinity as lnM1.

5.5.7 Strong and Weak Shocks

The strength of a shock is usually measured by its pressure jump .p2 � p1/=p1. We
may note that this quantity is proportional to M2

1 and is not bounded. This is not the
case for the density or velocity jumps. When M1 ! 1

�2

�1
! � C 1

� � 1
and

v2
v1

! � � 1
� C 1
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The weak shocks are defined as those where the variation of entropy is negligible.
This distinction between weak and strong shocks is possible because of the very
slow variation of entropy in the neighbourhood of M1 D 1. If, for instance, M1 D
1:1 then �s=s 	 6 � 10�5. If we neglect entropy variations less than 10%, shocks
are weak as long as M1 � 1:46.

5.5.8 Radiative Shocks

Some stars like cepheids or “RR Lyrae” show periodic variations of their luminosity
(see Fig. 5.6). These variations are understood as the signature of radiative shock
waves that propagate inside these stars as a result of the breaking-up of some
acoustic waves. Radiative shock waves are much more powerful than the foregoing
strong shocks. They are also called hypersonic shock waves because M2

1 � 1.
They occur in a low-density and hot medium. After the shock, matter is ionized by
collisions but free electrons recombine with ions while emitting mainly ultraviolet
radiations. Part of these photons propagate towards the upstream region and pre-
heat the gas (see Fig. 5.7). This phenomenon makes the shock almost isothermal:
the downstream gas cools efficiently by radiating photons after its compression.
This is very different from the previous shocks where we assumed that the gas was
evolving adiabatically after the shock. If we remember that pressure is proportional
to density for an ideal isothermal gas, namely P / �, the adiabatic index would
be � D 1. Thus, the compression ratio .� C 1/=.� � 1/ may raise to infinity if the
gas supports a quasi-isothermal compression. This ratio should be of order of M2

1 .
In actual stellar models, typical shocks have a compression ratio of order 30. They
are obviously in the hypersonic regime. Such shocks have been reproduced in the
laboratory only very recently, thanks to the development of powerful lasers that can
deposit a lot of energy in a very small volume.

Phase

Delta Cephei

0.5

+4.0

M
ag

+3.5

1.0 1.5

Fig. 5.6 Lumosity variations of the cepheid star ı Cephei. Its oscillation period is 5.37 days. The
luminosity of the star varies by more than a factor two between minimum and maximum. This
variation comes from an acoustic oscillation of the star. Its large amplitude leads to the formation
of a radiative shock wave (source ThomasK Vbg)
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Fig. 5.7 Schematic view of a radiative shock in a star according to Gillet (2006)

5.5.9 The Hydraulic Jump

Another, very common type of discontinuity wave is the discontinuity of water depth
in breaking water waves like in Fig. 5.8: this is the hydraulic jump (see the schematic
view in Fig. 5.9). A connection can be easily made with sound waves if we consider
waves propagating in shallow water. In this case, indeed, wave velocity is

p
gh

showing that in a similar way as in Fig. 5.4, the wave front steepens inevitably since
the wave velocity increases like

p
h. In this case there is a direct analogy between

depth h and temperature T of an ideal gas where the sound wave propagates.5

However, the analogy, cannot be pushed too far, since gravity waves are necessarily
two dimensional because of the incompressibility of the fluid. Another complication
comes from the fact that these waves are naturally dispersive. The equality of phase
and group velocity is only true asymptotically for wavelengths long compared to the
depth. We shall see below that these dispersive effects can stop the steepening of the
wave front and give rise to a solitary wave.

5Generally, we use the density as the analog of the depth [just compare (5.67) et (5.60a)], but the
analog of the hydraulic jump is a shock wave in gas where � D 2 in which case T and � are
proportional.
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Fig. 5.8 Hydraulic jumps from braking waves on a sand beach (Picture from the author)

h

h1

2
v

v1
2

Fig. 5.9 A schematic view of a hydraulic jump

Let us examine the jump conditions of a hydraulic jump. Considering the fluid as
incompressible, the conservation of the mass flux when crossing the hydraulic jump
implies that:

v1h1 D v2h2 (5.67)

in the most simple set-up where the velocity is assumed to be constant in the whole
cross section of the flow.

The conservation of momentum leads to the same reasoning as for shock waves.
The variation of the momentum flux must be compensated by the total pressure
forces. Hence,

�.v21h1 � v22h2/C
Z h1

0

p.z/dz �
Z h2

0

p.z/dz D 0

Since we neglect vertical motions, the hydrostatic balance controls the z-dependence
of the pressure. Thus,

p D �g.h � z/

where we assumed a zero pressure above the fluid. It yields

Z h1

0

p.z/dz D �g
h21
2

and
Z h2

0

p.z/dz D �g
h22
2
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From these relations, a second jump condition connecting upstream and downstream
quantities6 can be derived:

v21h1 C gh21=2 D v22h2 C gh22=2 (5.68)

With (5.67), we find out the ratio between upstream and downstream depth:

h2

h1
D
q
1C 8Fr21 � 1

2
(5.69)

In this expression we introduced the Froude number:

Fr1 D v1p
gh1

This number quantify the ratio between the fluid velocity and the speed of waves. It
is the analog of the Mach number for acoustic waves. When this number is larger
than unity, the flow is supercritical or torrential. On the contrary, when Fr < 1, the
flow is said to be subcritical or fluvial. One may show as an exercise, that if the flow
is supercritical in the upstream region, it is subcritical in the downstream region.
Hence, we have the following equivalence:

Fr1 T 1 ” Fr2 S 1 (5.70)

The first observation of a solitary wave

“I believe I shall best introduce this phænomenon by describing the circumstances of my own
first acquaintance with it. I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of
water, which continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phænomenon which I have called the Wave
of Translation, a name which it now very generally bears;" From “Report on waves", Rep. 14th

Meet. Brit. Assoc. Adv. Sci., York, 319–320 par S. Russell (1844).

6As for the shock waves, we use a frame attached to the discontinuity. Upstream and downstream
regions are defined similarly.
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As it may be guessed, the hydraulic jump is a dissipative structure: the hydraulic
load decreases through a hydraulic jump. To show this, let us consider a streamline
on the plane z D 0 and compare the energy per unit mass upstream and downstream.
For this purpose we just need to check that

1

2
v21 C gh1 � 1

2
v22 C gh2

Using expressions (5.86), demonstrated in the exercises, the preceding inequality
implies

�
h2

h1
� h1

h2

�
h1 C h2

4
C h1 � h2 � 0

” .h2 � h1/
2 � 0

which is always true.

5.6 Solitary Waves �

Nonlinear effects have not always dramatic consequences such as the formation of a
discontinuity. The steepening of the wave front can indeed be compensated by some
dispersion effects which tend to spread the wave packet. When this balance occurs,
one may observe a solitary wave which is remarkable for its stability.

The first observation of a solitary wave was made by Scott Russell in 1834 (see
box and Fig. 5.10) on a surface gravity wave. In Sect. 5.3.1 we saw that these waves
are dispersive. It is just in the asymptotic case of long wavelengths compared to
the depth, that dispersion disappears. This property allows a control of the effects of
dispersion by tuning the ratio of the wavelength to the depth. Another possible small
parameter is obviously the amplitude of the wave. We shall see that when these two
possibly small parameters are linked through a simple relation, one obtains a new
equation, first derived by Korteweg and de Vries in 1895, which governs the motion
of solitary waves.

5.6.1 The Korteweg and de Vries Equation

We first set again the general equations governing surface waves, still neglecting the
effects of viscosity. We concentrate on the propagation of a wave in a one-dimension
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water basin of depth h. The motion is assumed irrotational and the velocity potential
verifies:

8̂
<̂
ˆ̂:

�˚ D 0

@˚

@t
C 1

2
v2 C P

�
C gz D Cst

(5.71)

This system is completed by the following boundary conditions:

vz D @˚

@z
D 0 at z D 0

@zs
@t

C v � rzs D vz

P D 0

9>>=
>>;

at z D hC zs.x; t/

where the pressure above the fluid has been set to zero. We first rewrite this system
using non-dimensional variables.

p
gh is a natural scale for the velocities and h for

the lengths. Thus we set

v D p
gh u; ˚ D h

p
gh�; t D

p
h=g � and zs D h �s

We then get

�� D 0 (5.72)

Fig. 5.10 Repetition of Russell’s observation of a solitary wave in Union Canal of Edinburgh
during a conference at Heriot-Watt University (Nature, 3 August 1995)
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@�s

@�
C u � r�s D @�

@z

@�

@�
C 1

2
.r�/2 C �s D 0

9>>>=
>>>;

at z D 1C �s.x; t/ (5.73)

@�

@z
D 0 at z D 0 (5.74)

where we substituted to the boundary condition P D 0 the equation of momentum
taken on the surface, with the constant set to zero.

The next step is slightly delicate. We wish to introduce the small parameters and
to consider the situations that are weakly nonlinear and weakly dispersive. Since the
solitary wave seems to be a steady solution in some appropriate reference frame,
we look for slowly evolving solutions in a new frame. We therefore introduce the
following new form for the solutions:

�s � " Q�s. Q�; Qx/ and � D "1=2 Q�. Q�; Qx/
where we set:

Qx D "1=2.x � �/; Q� D "3=2�

Theses new functions and new variables are sensitive to large scale or long time-
scale variations only: x and � need to vary a lot to yield significant variations on Qx
and Q� . With these new variables (5.72) now reads:

@2 Q�
@z2

C "
@2 Q�
@ Qx2 D 0 (5.75)

while (5.73) yields

@�s

@�
C u � r�s D @�

@z

” @�s

@ Q�
@ Q�
@�

C @�s

@ Qx
@ Qx
@�

C @�s

@ Qx
@�

@ Qx
�
@ Qx
@x

�2
D @�

@z

where we took into account that Qx depends on � . We now deduce:

"2

 
@ Q�s
@ Q� C @ Q�

@ Qx
@ Q�s
@ Qx

!
� "

@ Q�s
@ Qx D @ Q�

@z

"
@ Q�
@ Q� � @ Q�

@ Qx C 1

2

 
@ Q�
@z

!2
C "

2

 
@ Q�
@ Qx

!2
C Q�s D 0

9>>>>>>=
>>>>>>;

at z D 1C "�.x; t/

(5.76)
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and

@ Q�
@z

D 0 at z D 0 (5.77)

We then make the expansion of Q�s and Q� in powers of ":

Q� D
1X
nD0

�n. Qx; z; Q�/"n and Q�s D
1X
nD0

�n. Qx; Q�/"n

The first step consists in solving (5.75) for Q�. The first orders give:

@2�0

@z2
D 0;

@2�1

@z2
C @2�0

@ Qx2 D 0;
@2�2

@z2
C @2�1

@ Qx2 D 0; � � �

Using the boundary conditions in z D 0, we easily find a new expression for Q�,
namely:

Q�. Qx; z; Q�/ D c0 C ".c1 � c00
0 z2=2/C "2.c

.4/
0 z4=24� c00

1 z2=2C c2/C O."3/

where c0; c1; c2 are functions of Qx and Q� . The primes indicate the derivatives with
respect to Qx. The first boundary condition, taken at order ", gives:

@�0

@ Qx D c00
0

and at order "2:

@�0

@ Q� C c0
0

@�0

@ Qx � @�1

@ Qx D �c00
0 �0 C c

.4/
0 =6 � c00

1

Concerning the second boundary condition, it gives

�0 D c0
0 and

@c0

@ Q� � c0
1 C c

.3/
0 =2C c02

0 =2C �1 D 0

These equations are used to obtain the equation controlling �0, which we rename �.
We thus find:

@�

@ Q� C 3

2
�
@�

@ Qx C 1

6

@3�

@ Qx3 D 0 (5.78)

known as Korteweg and de Vries equation (or also KdV equation).
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5.6.2 The Solitary Wave

This equation is solved by looking for a solution of the form �. Qx � Q�/. Hence,

�� 0 C 3

2
�� 0 C 1

6
� 000 D 0

which we integrate once, and get:

�� C 3

4
�2 C 1

6
� 00 D A

The constant of integrationA is set to zero as we are interested in solutions vanishing
at infinity. Multiplying this equation by � 0 and integrating again, we find:

�1
2
�2 C 1

4
�3 C 1

12
� 02 D 0

As before, the constant of integration has been set to zero. This equation can be
solve analytically since the variables can be separated.

Z
d�

�
p
1 � �=2

D p
6. Qx � Q�/

Despite of its look, the integration of the left-hand side is very easy if we set

� D 2

cosh2 #
I

we immediately find that

# D �
r
3

2
. Qx � Q�/ :

1= cosh# is called the hyperbolic secant, and noted sech. Back to the dimensional
variables, we have

zs D h.1C "�/

D hC 2h" sech2
"r

3"

2
.x � .1C "/�/

#

We now introduce the wave amplitude a D 2h", the dimensional length and time
scale:

zs D hC a sech2
"r

3a

4h3

n
x �p

gh


1C a

2h

�
t
o#

(5.79)
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Fig. 5.11 This graph shows
three solitary waves of
amplitudes a, a=2, a=4
respectively

The solitary wave thus moves at a speed of:

c D p
gh


1C a

2h

�
(5.80)

This velocity is only slightly different from the velocity of a gravity wave moving
in shallow water if we take the total height c ' p

g.hC a/.
We also observe that the horizontal scale of the wave (the width of the “bump”)

is given by

L D
r
4h3

3a
(5.81)

We show in Fig. 5.11 the shape of the solitary wave for three amplitudes.

5.6.3 Elementary Analysis of the KdV Equation

The properties of the KdV equation are numerous and we could write a full book on
it! Here, we content ourselves with an elementary analysis so as to appreciate the
role of the various terms involved in this equation. Let us first focus on the linear
term @3�=@x3. Eliminating nonlinear terms, the KdV equation reads

@�

@�
C 1

6

@3�

@x3
D 0 (5.82)

which we modify by changing of reference frame, namely �.x; �/ D � 0.x � �; �/.
The equation for � 0 is

@� 0

@�
C @� 0

@x
C 1

6

@3� 0

@x3
D 0:
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A solution of the plane wave type gives the following dispersion relation:

! D k � k3=6

It can be compared to (5.39) which is the dispersion relation of gravity waves in a
basin of finite depth. If we expand (5.39) for the long wavelengths, it turns out that

!2 ' ghk2
�
1 � k2h2

3

�
” ! ' p

ghk

�
1 � k2h2

6

�

which is exactly the foregoing relation up to some dimensional coefficients. We see
that the dispersive term @3�=@x3 comes from the finite depth of the fluid.

We may now have a look to the way this term contributes to the spreading of
the wave packet. For this purpose, we use a frame attached to the waves and the
relation (5.82).

Let �0.x/ be the shape of the wave packet initially. We suppose that this shape
is a kind of bell curve such that its Fourier transform O�0 exists. Taking the Fourier
transform of (5.82), it turns out that

O�.k; �/ D O�0eik3�=6

hence

�.x; �/ D
Z C1

�1
O�0eikxCik3�=6dk

This expression is nicer if we observe that eik3=3 is the Fourier transform of Airy’s
function Ai.x/, i.e.

eik3=3 D
Z C1

�1
Ai.z/e�ikzdz

After some easy manipulations, it turns out

�.x; �/ D
�
2

�

�1=3 Z C1

�1
�0.z/Ai

�
x � z

.�=2/1=3

�
dz

If the initial wave packet is strongly peaked and may be assimilated to a Dirac peak,
then

�.x; �/ D
�
2

�

�1=3
Ai

�
x

.�=2/1=3

�
(5.83)
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Fig. 5.12 (a) A plot of Airy’s function. Schematically, this function behaves as cos x=.�x/1=4
when x ! �1 and as e�2x3=2=3 when x ! C1. (b) The convolution of Airy’s function and a
gaussian �0.z/ D e�10z2

Airy’s function and its convolution by a gaussian are shown in Fig. 5.12. With this
figure, we note that energy is dispersed in the domain � � 1; 0� through a set of
oscillations. The expression (5.83) shows the spreading of the wave packet: its width
increases like �1=3 (in fact the width of oscillations) whereas its amplitude decreases
as ��1=3.

Let us now examine the role of the nonlinear term. We leave aside the linear term
and rewrite the KdV equation as

@�

@�
C 3

2
�
@�

@x
D 0 (5.84)

This equation is of the same type as the one verified by Riemann’s invariant. Thus
we write the equation of characteristics, namely

dx

d�
D 3

2
�

which are straight lines since � is constant on such a line. If, at initial time, �
has a bell shape, the construction of characteristics issued from the wave front
immediately shows that a discontinuity will appear after a finite time (see Fig. 5.13).

Equation (5.84) is in fact of the same type as a famous equation in Fluid
Mechanics, namely

@u

@t
C u

@u

@x
D �

@2u

@x2
(5.85)
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Fig. 5.13 A schematic view
of the formation of a
discontinuity through Burgers
equation

τ

X

Discontinuity

which is called Burgers equation. This equation is just the equation of momentum
of an incompressible fluid in which one would have neglected the pressure force.
When viscosity is neglected (and time and length are appropriately scaled), (5.85)
and (5.84) are equivalent. The foregoing reasoning shows that the solutions of
Burgers equation without viscosity always form discontinuities.

5.6.4 Examples

Similarly as the observation of Scott Russell, there exist some natural phenomena
where solitary waves appear. We shall mention two of them: the tidal bores and the
tsunamis.

The tidal bore is the wave that propagates in an estuary, shallow enough, when
the tide rises. This wave is usually first breaking and can be describe as a hydraulic
jump. Getting upstream this hydraulic jump decreases and may give birth to a train
of waves, which, like the wave observed by Russell, have a very long life time and
are also solutions of the KdV equation: these are cnoidal waves. Tidal bores are very
spectacular at the equinoxial high tides. In Europe, famous ones are in the Gironde
in France and in the river Severn in England (see Fig. 5.14).

Tsunamis (“thunderstorm” wave in Japanese) designate the tidal waves which
break on the coasts of the Pacific ocean (where they are the most common). Their
origin is generally related to an earthquake. The seismic wave gives momentum
to a large mass of water which may generate a solitary wave. Such a wave can
cross the Pacific ocean without much damping. For instance, it is well-known that
earthquakes occurring along the Alaska coast can generate a few hours later a
tsunami on the Hawaiian shores. The wave has an horizontal scale which may reach
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Fig. 5.14 The hydraulic jump made by the tidal bore of river Severn (photographed by D. H.
Peregrine, in An Album of Fluid Motion, van Dyke 1982).

a hundred nautical miles (180 km). In this case, taking into account the depth of
the Pacific ocean (5 km), the amplitude may be estimated to 5 m from (5.81). Its
velocity may also be computed; it is close to

p
gh, which gives 800 km/h. Thus it

crosses half of the Pacific ocean (4,800 km) in 6 h. When it arrives on a shore the
steepening of the wave front may generate a water wall up to 20 or 30 m high.

5.7 Exercises

1. The bassoon and the oboe are two instruments whose air column is conical. Using
the fact that a cone is a part of a sphere, rewrite the equation of disturbances and
show that the eigenmodes obey the same dispersion relation as those of the flute.
Compute the length of a bassoon whose gravest note is at 58.27 Hz (third B flat).
Compare the result to its real length of 295 cm.

2. What is the frequency variation of the fundamental mode of a flute when the air
temperature varies from 10 to 30 ıC. Compare it to the change of frequency in
a half-tone interval. The variation of the length of the tube is neglected and we
recall that an octave is divided into twelve equal half-tones (tempered scale).

3. In a harbour along the coast of the Atlantic ocean, waves arrive periodically with
a period of 15 s. What is their wavelength? their phase velocity? How long would
it take for them to cross the Atlantic ocean (4,800 km)? We assume that the ocean
is infinitely deep.

4. How long does it take for a wave of very long wavelength to cross the Atlantic
ocean whose width is 4,800 km and depth 5 km? We give g D 9:81 m/s2.
Show that the Atlantic ocean is a resonant cavity for the tides; what are the
consequences?
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5. Derive the dispersion relation of capillary waves in the shallow water approxi-
mation.

6. a) From the jump conditions of a hydraulic jump, show that upstream and
downstream velocities are of the form:

v1 D
s
g
h2

h1

�
h1 C h2

2

�
and v2 D

s
g
h1

h2

�
h1 C h2

2

�
(5.86)

b) Show that on each side of a hydraulic jump, Froude numbers are related by

Fr2 D Fr1

0
B@
q
1C 8Fr21 � 1

2

1
CA

�3=2

Derive the equivalence (5.70).
7. Show that the following quantities

Z C1

�1
�.x; �/dx and

Z C1

�1
�2.x; �/dx

are conserved by the KdV equation. What is the physical interpretation of these
conservation laws?

Appendix: Jump Conditions

We give here the demonstration of the relations (5.61)–(5.64) relating upstream and
downstream quantities in a normal shock. Let us recall that the enthalpy of an ideal
gas is:

h D �

� � 1

p

�
D c2

� � 1
(5.87)

The energy relation can thus be written

c21 C .� � 1/v21=2 D x�p2=�1 C x2.� � 1/v21=2

where we introduced x D v2=v1. The conservation of momentum (5.60b) reads now

p2 D p1 C �1v
2
1.1 � x/

Combining the two foregoing equations, we find

.� C 1/x2 � 2.� C 1=M2
1 /x C 2=M2

1 C � � 1 D 0
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This second order equation necessarily has x D 1 as a solution (why?). Thus,
factorizing it we get straightforwardly

.x � 1/..� C 1/x � 2=M2
1 � � C 1/ D 0

which gives the non-trivial solution sought after. From (5.60a), we derive (5.62),
relating the densities.

The relation between upstream and downstream pressures comes from (5.60b)
which we divide by p1. Thus

p2

p1
D 1C �1v21

p1

"
1 � �2

�1

�
v2
v1

�2#
D 1C �v21

c21

�
1 � v2

v1

�

The desired expression is obtained using (5.61).
The relation on Mach numbers (5.63) comes from the equation on enthalpy.

Using (5.87), we find

c22 D c21 C .� � 1/

2
.v21 � v22/

Dividing this expression by v22 we get (5.63).

Further Reading

The monograph “Waves in Fluids” of Lighthill (1978), cannot be ignored, but, at
a less ambitious level, general books on fluid mechanics may be useful. As far as
shock waves are concerned the reader may consult the monograph of Courant and
Friedrichs (1976), Supersonic flow and shock waves, while the study of solitary
waves may be followed up with the introduction of Drazin and Johnson (1989) and
the more mathematical approach of solitons by Newell (1985).
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Chapter 6
Flows Instabilities

The study of the stability of flows is one of the cornerstones of Fluid Mechanics: the
subject is so large that it would deserve a whole book to be reviewed. Leaving aside
such an ambitious goal, we shall concentrate, in this chapter and the following one,
on the fundamentals, although, here and there, making some excursions in more
specialized topics.

The importance of instabilities, or stability questions, comes from their relation
to turbulence and mixing. An unstable flow is a necessary path to a turbulent one.
Turbulence is indeed a fundamental process in Fluid Mechanics because it controls
in many circumstances the fluid transport properties. The conditions within which
turbulence sets in, can be appreciated only when the questions of stability are settled.
Often, this is not sufficient, but always necessary.

6.1 Local Analysis of Instabilities

When we discussed the equations of perturbations, we found that a simple way to
understand their evolution was to consider them as plane waves and analyse their
dispersion relation. Owing to the simplicity of the approach, we again start with this
type of analysis.

6.1.1 Definitions

First of all, let us recall that the local analysis is only valid if the wavelength of
disturbances is very small compared to the scales of the velocity field as given by
expression (5.7).
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If, for some wavevectors k belonging to a subset of R3, the dispersion relation
gives a frequency ! with a negative imaginary part, then there are waves whose
amplitude grows exponentially with time. This is called the absolute or temporal
instability. It is the most frequent case, but the opposite one also exists: if, for some
real values of the frequency, the wavevector is complex, then we face a spatial or
convective instability.

The existence of these two types of instabilities is tied to the implicit nature of the
dispersion equation:D.!;k/ D 0. Two types of explicit solutions are thus possible:

!.k/ or k.!/

The first are called “temporal branches” when k 2 R3, while the second ones define
the “spatial branches” if ! 2 R. For example, the dispersion relation

! C 2k � k2 D 0

possesses one temporal branch ! D k2 � 2k, which is stable, and two spatial
branches k D 1˙ p

1C ! which can generate a spatial instability.

6.1.2 The Gravitational Instability

A simple example of an absolute instability comes from Astrophysics with the
gravitational instability, which is at the origin of star formation. To make things
as simple as possible, we consider an unbounded fluid of uniform temperature and
pressure. We assume that it is an ideal gas of adiabatic index � . The sound waves
propagate with a velocity

cs D p
�P0=�0

where P0 and �0 are respectively the pressure and density of the undisturbed
medium.

The linearized equations satisfied by the disturbances of the medium are:

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂:

@ı�

@t
C �0r � v D 0

�0
@v
@t

D �rıP � �0rı˚

ıP D c2s ı�

�ı˚ D 4�Gı�

(6.1)
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where we have taken into account the fluctuations in the gravitational field generated
by the fluctuations of density (the last equation of the system). For plane wave
solutions

ı� D ı�0e
i.!tCk�r/; v D v0ei.!tCk�r/; etc: (6.2)

we find the following dispersion relation:

!2 D c2s k
2 � 4�G�0 (6.3)

This relation clearly shows a temporal instability since all the perturbations with a
wavenumber smaller than

kJ D
s
4�G�0

c2s
(6.4)

are unstable and grow exponentially. The associated wavelength �J D 2�=kJ is
called Jeans’ length and the associated criterion, Jeans’ criterion. The dispersion
relation (6.3) also shows that there is no spatial instability:

c2s k
2 D !2 C 4�G�0 > 0; 8! 2 RI

thus k is always real.
In order to fix ideas, let us calculate Jeans’ length in the case of the Earth’s

atmosphere. We assume it to be a mass of air at P0 D 105 Pa and T0 D 20 ıC.
Then, cs = 343 m/s and �0= 1.2 kg/m3 giving �J D 6:8 104 km. The Earth’s
atmosphere, much smaller (in thickness) than this length, is not, therefore, in danger
of gravitational collapse! On the other hand, an interstellar cloud of a hundred solar
masses,1 with a temperature of 50 K and a diameter of two light-years can be wiped
out gravitationally (see exercises).

The example of the Earth’s atmosphere is interesting as it points out the limits
of the local analysis: if the dimensions of the fluid domain are smaller than the
wavelength of the disturbances we are interested in, the local solutions are invalid
because of boundary conditions.

6.1.3 Convective Instability

Such an instability is usually found in shear flows, for instance in a boundary
layer. Perturbations are amplified in the downstream direction and may transform
a laminar flow into a turbulent one (see Fig. 6.14 for the growth of a perturbation in

1A solar mass, symbolized by M
ˇ

, is equal to 2� 1030 kg.
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Fig. 6.1 Sketch of an
absolute (left) and convective
(right) instability in the
.x; t /-plane

x x

tt

the downstream direction). This instability can also be regarded as the growth of an
absolute instability advected by the background flow as shown in Fig. 6.1.

To further illustrate this mechanism, we shall consider a model problem based on
the perturbations of Burgers flow.2 The background flow is uniform and disturbances
are only on the velocity field and one-dimensional; thus ıu D ıu.x; t/ex and

@ıu

@t
C U

@ıu

@x
D �

@2ıu

@x2

where � is the kinematic viscosity. The dispersion relation of the Fourier modes is

i! C ikU D ��k2

This relation immediately shows that the temporal branch is stable since, for a given
k, the temporal dependence exp.i!t/ leads to an exponential decay.

Let us now extract the spatial branches of this dispersion relation. We easily find
that two branches exist, namely

k˙ D iU

2�

 
1˙

r
1C 4i!�

U 2

!

To discuss its properties, it is convenient to consider the limiting case of a small
viscosity such that !�  U 2. Thus,

kC D �!
U

C iU

�
and k� D !

U
� 2i�!2

U 3

2Burgers equation is given by (5.85).
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To see whether these branches correspond to growing or decaying perturbations, it
is useful to write the resulting velocity field, namely

uC D uC
0 e

i!
U .xCUt/CU

� x and u� D u�
0 e

� i!
U .x�Ut/� 2�!2

U3
x

These expressions show that a given phase of uC propagate to negative values of
x, therefore its amplitude decreases rapidly as exp.Ux=�/. On the other hand the
phase of u� propagates to positive values of x, and its amplitude also decreases (but
slower, as exp.��!2x=U 3/) as the perturbation moves to high values of x. In this
example, we see that if some disturbance is forced at a given frequency ! at x D 0

say, it will propagate upstream and downstream, but both waves will be damped.
Thus the flow is stable.

6.2 Linear Analysis of Global Instabilities

Although local analysis is very handy to get a first impression of the stability of a
steady flow, it is often limited in its applications because of the boundary conditions.
To deal with this constraint, we need moving to the global analysis, which is often
difficult. A medium way is to take into account the boundary conditions only in
one direction. Although still quite idealized, the resulting solutions are usually very
instructive on the physics of the flow. With this approach, we shall investigate
selected examples of instabilities, which will enlight us, at the same time, on the
properties of rotating fluids, shear flows, etc.

6.2.1 Centrifugal Instability: Rayleigh’s Criterion

Let us consider a perfect incompressible fluid filling the gap between two cylinders
of radii R1 and R2. The fluid rotates with the prescribed angular velocity profile
˝.s/. We wish to know the conditions to be met by this rotation law, for this flow
to be stable or unstable. The original flow, U D s˝.s/e' , is a solution of Euler’s
equation and satisfies r � U D 0.

To simplify the analysis, we assume that the cylinders are infinitely long. Thus,
boundary conditions are only imposed in the radial direction and we are allowed
to make a local analysis in the z-direction. We further restrict the disturbances to
the axisymmetric ones; we thus write the perturbations of the velocity and pressure
fields as

u.s; z; t/ D u.s/eikzC�t ; P.s; z; t/ D �p.s/eikzC�t (6.5)

where � is the fluid density.
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6.2.1.1 Equations for the Perturbations

The momentum equation leads to the following equations for p.s/ and u.s/:

�u C .U � r /u C .u � r/U D �rp (6.6)

which we rewrite as

�u � 2˝.s/u'es C .˝.s/us C .u � r/U.s//e' D �rp : (6.7)

with cylindrical coordinates .s; '; z/.
Finally, taking mass conservation into account, we get the four following

equations:

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

�us � 2˝.s/u' D �dp

ds

�u' C˚1.s/us D 0

�uz D �ikp

1

s

d

ds
.sus/C ikuz D 0

(6.8)

where we have introduced

˚1.s/ D 1

s

d.s2˝/

ds
:

The second equation gives the expression of u' as a function of us . The third and
fourth ones relate p and us. Altogether they lead to a single equation for us now
denoted u, namely

d

ds

�
1

s

d.su/

ds

�
� k2u D k2

�2
2.s/u (6.9)

where

2.s/ D 2˝˚1 D 1

s3
d.s2˝/2

ds
(6.10)

is proportional to the radial derivative of the angular momentum ` D s2˝ of the
fluid particles in the original flow. .s/ is called the epicyclic frequency. We shall
comment later about its physical meaning.
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Setting, � D 1=�2, the differential equation (6.9) has the general and interesting
form:

Lu D �k2˚.s/u (6.11)

Supplemented with the boundary conditions u D 0 at s D R1 and s D R2, this
is the classical Sturm–Liouville problem in the theory of differential equations. We
refer the reader to the maths complements in Chap. 12 to get acquainted with the
basic properties of Sturm–Liouville problems and proceed to the consequences for
our problem.

6.2.1.2 The Rayleigh Criterion

First of all, let us compare (6.11) with the general equation (5.11): it is of the same
form. Thus, in order to determine the stability of the flow U, we “just” need to know
the spectrum of the operator k�2˚.s/�1L, which gives the set of allowed values
of �. Usually, this is not an easy game; however, because of the Sturm–Liouville
nature of the eigenvalue problem, the answer is straightforward. For such problems
indeed, it may be shown that the eigenvalues are discrete, real and of the sign of
�k2˚.s/ if this function keeps the same sign in the interval of definition ŒR1; R2�.
If ˚ changes sign the eigenvalues are of both signs.

These properties of the Sturm–Liouville problems allow us to conclude on the
stability of the flow. Indeed, if ˚.s/ � 0, all the eigenvalues� are negative, which
means that all the eigenvalues � are purely imaginary. Thus perturbations are just
neutral; the flow is stable. On the other hand, if there exist an interval where ˚
is negative, then there exist some eigenvalues � that are positive, implying the
existence of real positive �, and thus the existence of amplified disturbances making
the flow unstable.

The foregoing result shows that the flow under consideration is unstable when,
somewhere, the specific angular momentum ` decreases with r (making ˚ < 0).
In this case, some axisymmetric disturbances grow exponentially. The opposite
situation, where ˚.s/ � 0, does not mean that the flow is stable; it means that
axisymmetric disturbances are not amplified, however, some non-axisymmetric
ones could be growing.

We thus find a sufficient condition for an instability (˚.s/ < 0 somewhere)
or a necessary condition for stability (˚.s/ � 0 everywhere). This criterion was
discovered by Rayleigh and named after him.

6.2.1.3 The Rayleigh Criterion: A Heuristic Derivation

The foregoing argument is rather mathematical and little intuitive. However, the
result may be explained on more physical grounds as follows. Let us consider two
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annular fluid elements of radii s1 and s2, with s1 < s2. Their angular momentum is
respectively `1 and `2. Their total kinetic energy is

Ek D 1

2

�
`21
s21

C `22
s22

�

Now let’s suppose that the position of these two fluid elements is inverted: their
angular momentum and mass are conserved, but the kinetic energy of the two
elements is now

E 0
k D 1

2

�
`21
s22

C `22
s21

�

Making the difference between these two expressions, we find

Ek � E 0
k D 1

2

�
`22 � `21

� � 1
s22

� 1

s21

�

If the angular momentum increases outwards then `2 > `1 and Ek < E 0
k, therefore

the change imposed is energetically unfavorable: the situation is stable. If, in the
opposite case, the angular momentum decreases outwards then `2 < `1 and Ek >
E 0
k : some energy is released if the position of the fluid elements are interchanged.

The system cannot stay in its initial configuration and will evolve towards a new
state of lower energy.

6.2.2 Shear Instabilities of Parallel Flows

Parallel shear flows represent a vast category of flows that are very common in
Nature and often at the origin of turbulence. A parallel shear flow is basically very
simple: its velocity field is like:

V D U.z/ex : (6.12)

It has only one component, taken here in the x-direction, which is a function of only
one coordinate normal to the direction of the flow, here z. We only consider steady
flows. We note that, if the density of the fluid is independent of the coordinate in
the velocity direction then, the equation of continuity is automatically satisfied. To
further simplify, we restrict our discussion to the case of incompressible fluids.

The stability of parallel shear flows has an interesting property formulated
by Squire’s theorem: the most unstable disturbances of these flows are two-
dimensional. This greatly simplifies the analysis of the stability of such flows.
We shall therefore start by proving this theorem before presenting some famous
examples of shear instabilities.



6.2 Linear Analysis of Global Instabilities 199

6.2.2.1 Squire’s Theorem

Statement: To every unstable disturbance of a parallel shear flow of an incompress-
ible fluid there corresponds a more unstable two-dimensional disturbance.
Proof: We begin by proving this theorem in the inviscid case. We assume that the
perturbations are in the following form:

f .r; t/ D f .z/eikxxCikyyC�t (6.13)

where the Fourier form is in the homogenous directions of the flow. The perturba-
tions satisfy

8̂̂
<
ˆ̂:

@v
@t

C U.z/
@v
@x

C vzU
0.z/ex D �rP

r � v D 0

(6.14)

After substitution by (6.13) and projection along the three axes, we find

8̂̂
<
ˆ̂:

.�C ikxU /vx C vzU
0.z/ D �ikxP

.�C ikxU /vy D �ikyP

.�C ikxU /vz D �DP
Dvz C ikxvx C ikyvy D 0

(6.15)

where we have set D D @
@z . We now make Squire’s transformation and set

Qk D
q
k2x C k2y;

Qk Qv D kxvx C kyvy; QP D
Qk
kx
P

The equations are now

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

.�C ikxU /Qv C kx
Qk vzU

0.z/ D �i QkP

.�C ikxU /vz D �kxQk D
QP

Dvz C i Qk Qv D 0

(6.16)

which can again be written as

8<
:
. Q�C i QkU /Qv C vzU

0.z/ D �i Qk QP
. Q�C i QkU /vz D �D QP
Dvz C i Qk Qv D 0

(6.17)
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by introducing Q� D �
Qk
kx

. Noting the similarity of (6.17) and (6.15) with ky D vy D
0, we conclude that, if the flow is unstable, namely if Re.�/ > 0, for every three-
dimensional disturbance, we can construct a two-dimensional disturbance .Qv; vz; QP /
that grows faster, since Re. Q�/ � Re.�/.

The case with viscosity is treated in a similar manner. While observing that for
the disturbances (6.13), the Laplacian is changed into D2 � Qk2, we rewrite (6.15) in
the form

8̂̂
<
ˆ̂:

Œ�C ikxU � �.D2 � Qk2/�vx C vzU
0.z/ D �ikxP

Œ�C ikxU � �.D2 � Qk2/�vy D �ikyP
Œ�C ikxU � �.D2 � Qk2/�vz D �DP
Dvz C ikxvx C ikyvy D 0

(6.18)

We apply Squire’s transformation

8<
:
Œ Q�C i QkU � Q�.D2 � Qk2/�Qv C vzU

0.z/ D �i Qk QP
Œ Q�C i QkU � Q�.D2 � Qk2/�vz D �D QP
Dvz C i Qk Qv D 0

(6.19)

where Q� D �
Qk
kx

� �. Thus, with every three-dimensional disturbances, we can
associate a two-dimensional disturbance, for which the Reynolds number is smaller.
Consequently, the critical Reynolds number, above which a given perturbation
grows exponentially, can be decreased by applying Squire’s transformation to that
perturbation. Hence, the perturbations, which give the lowest critical Reynolds
number of shear flows, are the two-dimensional ones.

6.2.3 Rayleigh’s Equation

In order to complete our study of parallel shear flows, we now transform (6.15)
into an ordinary differential equation for the stream function of the disturbances,
since, thanks to Squire’s theorem, we can restrict our study to two-dimensional
perturbations only. Accordingly, we set

vx D @ 

@z
D D and vz D �@ 

@x
D �ik 

where k D kx and ky D 0. We then transform (6.15) into

.�C ikU/k2 D D
�
.�C ikU/D � ik U 0	
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then finally into

.�C ikU/.D2 � k2/ � ikU00 D 0 (6.20)

which is Rayleigh’s equation.

6.2.3.1 Criteria of Stability

We can infer from Rayleigh’s equation a necessary condition for instability, that is
to say, a condition so that Re.�/ > 0 is possible. We return to (6.20) and assume
that the fluid is bounded by two planes located in z D a and z D b. By integrating
the equation over this domain after multiplication it by  �, the complex conjugate
of  , we find

Z b

a

 �.D2 � k2/ dz � ik

Z b

a

U 00j j2
�C ikU

dz D 0 :

Since vz D 0 on each bounding plane, integration by parts yields

Z b

a

.jD j2 C k2j j2/dz C ik

Z b

a

U 00j j2
�C ikU

dz D 0 (6.21)

The imaginary part of this equation leads to

Re.�/k
Z b

a

j j2U 00

j�C ikUj2 dz D 0 (6.22)

which shows that a necessary condition for the existence of an instability is that
the integral be zero. This condition implies that U 00 changes sign at least once in
the interval Œa; b�. Reciprocally, this condition shows that if a velocity profile has no
point of inflexion, then Re.�/ D 0 and the flow is stable with respect to infinitesimal
disturbances.

This condition is evidently not sufficient: even if Re.�/ ¤ 0, this quantity is not
necessarily positive!

Rayleigh proved this result in 1880. In 1950 Fjørtoft found a more constraining
version of it. He showed that a necessary condition for instability was that

U 00.U � Ui/ < 0

at some point in the flow where Ui is the velocity at the inflexion point. We propose
the proof of this theorem as part of the exercises.



202 6 Flows Instabilities

6.2.4 The Orr–Sommerfeld Equation

The Orr–Sommerfeld equation is the variant of Rayleigh’s equation including vis-
cosity. We obtain this equation after several manipulations of (6.19), by expressing
vx and vz with the help of the stream function. Orr–Sommerfeld equation has the
following form:

�
�C ikU � �.D2 � k2/

�
.D2 � k2/ D ikU00 (6.23)

which we complete with the no-slip boundary conditions at the walls (planes z D 0

and z D d ), namely

 D D D 0 at z D 0 and z D d

We shall not discuss the solutions of this equation because it would bring us too far,
and refer the interested reader to the book of Drazin and Reid (1981). We shall give
a few comments only.

Shear flows, like boundary layers, jets, wakes, mixing layers, etc. are usually
the seat of strong turbulence, which is a consequence of shear instabilities. The
Orr–Sommerfeld equation offers a nice model to study these instabilities and its
solutions have therefore numerous applications.

Many cases have been studied. The simplest ones are those at low Reynolds num-
ber, which can be investigated by perturbation methods on the diffusion equation.
However, they are not the most interesting since applications usually require the
other extreme: a very high Reynolds number. As we saw in Chap. 4, this implies the
existence of boundary layers, but not only. Indeed, from Rayleigh equation, to which
Orr–Sommerfeld reduces at infinite Reynolds number, we observe that something
special must occur when

�C ikU D 0

or when c D !
k

D �U . This equality means that the phase velocity of the
perturbations is equal and opposite to the fluid velocity; the phase perturbation
stands still in the reference frame. At this place, the coefficient of the second
derivatives of  vanishes. A singularity of the perturbed flow shows up: this is a
critical layer. In such a layer, viscosity smooths out the singularity, which usually
consists in a discontinuity of the parallel component of the velocity field (see
Sect. 6.3.3 for instance). Critical layer are also called detached shear layers; their
thickness, like the one of boundary layers, scales like some fractional power of the
viscosity (�1=3 and �1=4 are the most common cases). They are important in the
global dynamics of a fluid layer as they are strong dissipative structures.

Ending the chapter, we shall use Orr–Sommerfeld equation to introduce
algebraic instabilities that represent another path to turbulent flows.
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6.3 Some Examples of Famous Instabilities

6.3.1 Example: The Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability is a shear instability that appears when two fluid
layers of different densities, slide one on the other.

In order to analyse this instability, we shall consider the setup of an air flow on
top of a water plane. The two fluids are assumed to be inviscid. The air occupies the
z > 0 half-space, while the water fills the remaining space. The air is assumed to
be moving at a constant velocity V ex with respect to the water. To be complete, we
also take into account the surface tension � between the two fluids. Thus, except
for the air motion, the set-up is exactly the same as the one use in Sect. 5.3, when
studying surface waves.

As in Sect. 5.3, we assume the perturbations of the velocity field to be irrotational,
namely ıv D r˚a. We thus rewrite the second equation of (5.26) directly as:

@˚a

@t
C V

@˚a

@x
C ıPa

�a
C gız D cst (6.24)

Since the potential ˚a still satisfies Laplace’s equation, (5.29) is always satisfied
because we are still looking for solutions in the form of (5.27). On the other hand
the boundary condition (5.30) is modified on the air side, indeed

vz;water D @zs
@t

and vz;air D @zs
@t

C V
@zs
@x

Fig. 6.2 The great red spot of Jupiter as viewed by the Galileo probe. Note the vortices around it.
They come from the shear instabilities forced by this flow (Credit NASA)
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(5.32) is therefore replaced by

k˚water.0/ D �i!zs and k˚a.0/ D i.! � kV/zs

Since we take surface tension into account we have

ıPw D ıPa C �k2zs

according to (5.40). Finally, we derive the following dispersion relation

!2.�w C �a/� 2!�akV � .�w � �a/gk � �k3 C �ak
2V 2 D 0 (6.25)

The temporal branches can be easily extracted:

!˙ D kV�a ˙ p
�

�w C �a
and � D .�w C �a/Œk

3� C .�w � �a/gk� � k2V 2�a�w

(6.26)

The expression of !˙ shows that the instability arises when� < 0, that is when

V 2 >
�w C �a

�a�w

h
�k C .�w � �a/

g

k

i
:

Since the term in brackets has a minimum when k D kmin D p
.�w � �a/g=� , we

see that the flow will be unstable if, and only if, the velocity V is greater than the
critical velocity given by:

Vcrit D
�
2

�w
C 2

�a

�1=2
Œ�g.�w � �a/�1=4 (6.27)

With typical values of a water-air interface, namely �w D 1;000 kg/m3, �a D
1:2 kg/m3, g D 9:81m/s2 and � D 0:072N/m, we find Vcrit D 6:4m/s. The
wavelength of the most unstable mode, namely that for which k D kmin, is
�crit D 1:7 cm, which is the length where the capillary effects are of the same
order of magnitude as those of gravity (see Sect. 5.3.2).

6.3.2 Instabilities Related to Kelvin–Helmholtz Instability

Formula (6.25) actually contains many interesting cases that we shall discuss
now.
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6.3.2.1 Rayleigh–Taylor Instability

If in (6.25) we set V D 0, we immediately find the dispersion relation of gravity or
capillary waves (5.43). Now, let us assume that we manage to put the water above
the air. This situation is likely unstable. In fact, since

!2 D .�a � �w/gk C �k3

�e C �a
; (6.28)

we see that this is not necessarily the case. In order for the situation to be unstable,
it is necessary that k <

p
.�w � �a/g=� , namely that the perturbations with a

wavelength greater than �crit D 2�
p
�=.�w � �a/g can grow.

The foregoing instability, which appears when a layer of fluid covers a layer of
a less dense fluid in a gravitational field, is known as Rayleigh–Taylor instability. It
usually occurs in Nature when a fluid layer is heated from the bottom. The instability
then leads to a fluid flow known as thermal convection, which we shall study in detail
in Chap. 7.

Now, the instability shown by (6.28) can be illustrated by a simple experiment.
Taking a bottle filled with water, we turn it upside down, maintaining the cork on the
orifice. Removing it delicately, we observe that if the diameter of the bottleneck is
small enough,3 the water remains in the bottle. If the diameter is too large, however,
the stability of the equilibrium can be restored by increasing artificially the surface
tension: a piece of paper laid on the interface will do the job.

Finally, let us note that if the surface tension is zero, for example if both fluids
are gases, then the equilibrium is always unstable.

Figure 6.3 shows the development of Rayleigh–Taylor instability in a numerical
simulation of a supernova explosion. This instability plays an important role in the
mixing of elements yielded by this stellar explosion.

6.3.2.2 The Instability of the Mixing Layer

Another example that is easily derived from (6.25) is the one where the two fluids
are identical. Thus, �a D �w D �.

The configuration thus obtained is the famous “vortex sheet” presented in Fig. 3.9
where the velocity sustains a discontinuity that usually develops into vortices
(see Fig. 6.2). From (6.25) we see that such a configuration is unstable for all
wavelengths since

! D .1˙ i/kV=2 :

3We may expect that if the diameter of the bottleneck is smaller than 1.7 cm, the equilibrium is
stable. However, we should keep in mind that the value was derived for pure water; impurities
decrease the surface tension and lead to a smaller value of the critical wavelength.
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Fig. 6.3 Growth of the
Rayleigh–Taylor instability in
the wake of the shock wave
associated with a supernova
explosion. The four quadrants
show the concentration of
helium, oxygen, nickel and
silicium. The numerical
simulation has been made by
Joggerst et al. (2010)

The growth rate increases with the wavenumber without bounds apparently. This
dispersion relation comes from the discontinuity of the velocity field. In real
systems, the discontinuity has some thickness (due to viscosity) and the growth rate
reaches a maximum for perturbations with a wavelength similar to the thickness of
the vortex sheet.

6.3.3 Disturbances of the Plane Couette Flow

The plane Couette flow is a shear flow for which the profile is linear:

U.z/ D z=T (6.29)

where T is a constant homogenous to a time. A discussion of the perturbations of
this flow is interesting. Setting � D i! with ! 2 R and substituting (6.29) in
Rayleigh’s equation we find

.! C kU/.D2 � k2/ D 0 (6.30)

If we assume that .! C kU/ ¤ 0, then  is given by

 D A sh .kz CQ/

If the flow takes place between two planes situated at z D 0 and z D d , at
which the disturbances vanish, then  D 0 throughout. Therefore, in order that
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the perturbations exist, it is necessary that ! C kz=T D 0 in the interval Œ0; d �. In
other words, the disturbances are such that

! 2 Œ�kd=T; 0�

so that their spectrum is continuous.
The form of the solutions is always given by (6.30), but the solutions have a

discontinuity in z D zc D �!T=k. Actually, we have

 .z/ D A sh kz; if 0 � z � zc

 .z/ D B sh k.z � d/; if zc � z � d

At z D zc ,  is continuous because vz is continuous, which is imposed by mass
conservation. Therefore, we have

B D A
sh kzc

sh k.zc � d/

Let us now calculate vx D D on each side of zc . We easily verify that vx.z�
c / ¤

vx.zC
c /. The component vx is discontinuous at this point. This discontinuity illus-

trates a property of linear operators, which connects the existence of a continuous
spectrum to that of discontinuous eigenfunctions.

This discontinuity of the perturbed vx means that the plane Couette flow is likely
unstable to finite-amplitude disturbances. Indeed, such a perturbation will contain
a vortex sheet, which is always unstable. This inference has been actually verified
experimentally and numerically.

6.3.4 Shear and Stratification

To conclude this section on famous unstable shear flows, we now study the case
where the fluid is stably stratified in the vertical direction. In this way, we can
examine the case where shear instabilities are opposed by a positive temperature
gradient that inhibits vertical motions but allows the propagation of internal gravity
waves. This situation is often met in natural systems, for instance a lake over which
a wind is blowing. The wind entrains surface water and thus imposes some shear
flow in the lake. But lake water is often stably stratified with cold (dense) water
below (light) warmer water. Because of this stratification, shear flow instabilities
may be inhibited, and thus the mixing of waters in the lake.

In order to study the evolution of disturbances in such a system, we return to
(6.14) modified to take the buoyancy force into account and completed by the
equation of temperature (5.45b).
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Staying with the two-dimensional case and using the same notations as before,
we now have:

8̂
<̂
ˆ̂:

.�C ikU/vx C U 0vz D �ikP

.�C ikU/vz D �DP C ˛gT

.�C ikU/T C vz@zT0 D 0

Dvz C ikvx D 0

(6.31)

where T is the temperature fluctuation, ˛ the coefficient of thermal expansion (see
1.60) and T0 is the background temperature profile of the fluid in equilibrium. We
also introduce the Brunt–Väisälä frequency N such that N2 D ˛g@zT0 and the
stream function  such that vx D D and vz D �ik . We can then cast the
preceding system into a single equation for  :

.�C ikU/ŒD2 � k2� � ikU00 D k2N 2

�C ikU
 (6.32)

also called the Taylor-Goldstein equation. If we set the Brunt–Väisälä frequency to
zero, we recover Rayleigh equation. As for this equation, we shall derive a criterion
of stability when the flow is bounded by two horizontal plates. We could, as for
Rayleigh’s equation, multiply the equation by the conjugate of  and integrate z
between the two boundaries. We would then get

Z b

a

.jd j2 C k2j j2/dz C
Z b

a

ikU00j j2
�C ikU

dz D �k2
Z b

a

N 2j j2
.�C ikU/2

dz

By requiring the cancellation of the imaginary part of this equation, we find the
following necessary condition for the instability of the flow:

U 00 D 2.�I C kU/kN 2

�2R C .�I C kU/2

where we set � D �R C i�I . Unfortunately, this equation is not a criterion of the
flow itself, unlike Rayleigh’s one, since it depends on the eigenvalue. The way to
obtain a true criterion on the flow was discovered by L. Howard in 1961. It consists
in making use of the function

� D  p
�C ikU

which obeys

D Œ.�C ikU/D��C
�
k2
U 02=4�N2

�C ikU
� ikU00

2
� k2.�C ikU/

�
� D 0 (6.33)
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which we can multiply by �� and integrate between a and b. Taking the real part of
the result, we thus find

�R

Z b

a

�
jD�j2 C k2j�j2 � k2

U 02=4 �N2

j�C ikUj2 j�j2
�

dz D 0

In this equation the integral can vanish if, and only if, U 02=4�N2 > 0, or if

Ri D N2

U 02 � 1

4
(6.34)

Ri is called the Richardson number. Equation (6.34) is generally called the
Richardson’s criterion. We see that it is a necessary condition for instability. For
certain particular flows it is also sufficient. This criterion shows that when the
stratification is sufficiently large, that is to say when the Brunt–Väisälä frequency
is sufficiently high, the flow is stable.

This criterion, like Rayleigh’s criterion, can be recovered on heuristic arguments,
which allow a more physical understanding. To do this, we shall take two fluid
elements respectively at z and z C ız. In order to exchange them, some work against
the buoyancy force must be provided, namely

W D �gı�ız

The energy will be taken from the reservoir of kinetic energy, which stays in the
original flow. We then make the following transformation:

z C ız �C ı� U C ıU

z � U
�! � U C ˛ıU

�C ı� U C .1 � ˛/ıU

where ˛ is a free number between 0 and 1. We see that this transformation conserves
the mass and momentum at first order. Let us now calculate the difference of kinetic
energy ıEc between the initial and final states. We have

2ıEc D �U 2 C .�C ı�/.U C ıU /2��.U C ˛ıU /2�.�C ı�/.U C .1�˛/ıU /2
D 2˛.1 � ˛/�ıU 2 C 2˛Uı�ıU

We observe that if ˛ < 1 then ˛.1 � ˛/ � 1=4, and the maximum is reached at
˛ D 1=2, so that

2ıEc <	
1

2
�.ıU /2 C 2UıUı� : (6.35)
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Because of these constraints, stability is insured if

1

4
�ıU 2 C UıUı� � �gı�ız

that is to say if the maximum variation of the kinetic energy is smaller than the work
needed to exchange two fluid elements. Finally, there is stability if

1

4

�
dU

dz

�2
� �g

�

�
d�

dz

�
� U

�

d�

dz

dU

dz

We shall see later that in many circumstances, stratified flows can be computed
using the Boussinesq approximation, which implies the neglect of � variations while
maintaining constant the product gı�, (buoyancy force must not disappear!). Thus,
the second term of the right-hand side is usually negligible compared to the first;
in this way, we recover Richardson’s criterion, which was discovered in 1920 (see
Richardson 1920).

6.3.5 The Bénard-Marangoni Instability �

At the turn of the twentieth century Bénard (1874–1939) discovered that a thin film
of liquid heated from below exhibits some vortical cellular motions. For almost
60 years, these fluid flows have been interpreted as the result of thermal convection,
an instability driven by the buoyancy force (this is the subject of our next chapter).
However, Pearson (1958) showed that when the fluid layer is very shallow, buoyancy
effects are dominated by surface tension effects that are able, as we shall see, to
destabilize the fluid at rest.4

To understand this phenomenon, we consider a fluid layer of thickness d , infinite
in the x and y directions. In the z direction, i.e. across the layer, some temperature
gradient is imposed, for instance by heating the bottom boundary. In the equilibrium
situation, we thus have

Teq D T0 C ˇz;

for the temperature field. We assume that the density variations are negligible
altogether, thus perturbations of the velocity field v, of the pressure field ıp and
of the temperature field ıT , verify

4The name of Carlo Marangoni (Pavia 1840–Firenze 1925) is generally associated with this
instability as he was the first physicist to describe fluid flows driven by surface tension gradients
(with a paper in Annalen der Physik in 1871).
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8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

r � v D 0

@v
@t

D �1
�
rıp C ��v

@ıT

@t
C v � rTeq D �ıT

(6.36)

These equations need to be completed by boundary conditions. On the bottom plane,
we impose no-slip boundary conditions for the velocity and a fixed temperature; thus

v D 0 and ıT D 0 on z D 0

On the top boundary the fluid (a liquid) meets another fluid (a gas). Surface
tension is therefore important, and above all its temperature dependence. Since the
temperature fluctuations are assumed very small, a linear law is valid and sufficient;
we take

�.T / D �0.1C �T T / (6.37)

where �0 and �T are given by the nature of the liquid-gas interface. Usually, �T < 0
since surface tension decreases with temperature.5

We also assume that the deformation of the interface is negligible (�0 is large
enough), and neglect the effects of gas motion. In these circumstances, the boundary
conditions on the liquid at the interface are that the vertical velocity of the liquid
vanishes there and that no horizontal stress applies on this surface. From (1.70), it
turns out that:

v � ez D 0 and .Œ�liq�ez � r�/ � ez D 0 (6.39)

5Surface tension comes from the binding energy of molecules due to their mutual interactions in
a liquid. We may expect that at the critical temperature, which is the temperature where the gas
and liquid phases are undistinguishable, the surface tension disappears. This remark lead L. Eötvös
(1848–1919) to propose that surface tension varies with temperature like

� D k.Tc � T /=V 2=3

Here k is a universal constant for the liquids, V is the volume of one mole and Tc is the critical
temperature. This law, which is known as Eötvös rule, is only approximate, but suggests that
� decreases linearly with temperature, as actually observed experimentally. For instance, the
following fit

� D 7:3 10�2 Œ1� 0:0023.T � 291/� N=m (6.38)

matches rather well the variations of surface tension of water in the range 273–373 K, as illustrated
in Fig. 6.4.
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Fig. 6.4 Temperature variations of the surface tension of pure water; the dashed line shows the
linear fit given in the text

One condition remains to be specified: that on the temperature at the interface.
There, we should impose the general conditions between two conducting materials,
namely (1.66), with the additional point that air is a transparent medium where
energy may be carried out by radiation. Assuming that the liquid radiates like a
black body into the gas, boundary conditions at the interface read:

Tl D Tg and � �l @Tl
@z

D �T 4l � �g @Tg
@z

where � is Stefan constant. If we now consider the temperature perturbations around
a steady state, these perturbations verify:

ıTl D ıTg and
@ıTl

@z
C qıTl D �g

�l

@ıTg

@z

Usually, the thermal conductivity of liquids is much higher than the one of gases (see
Table 1.1) so that we can safely neglect the right-hand side of the second condition.
q D 4�T 3l =�l is a parameter which measures the efficiency with which the heat flux
permeating the liquid is radiated. If the liquid is a good conductor then the gradient
of temperature fluctuation must be small near the boundary. Hence, we shall take

@ıT

@z
C qıT D 0 on z D d (6.40)
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as the boundary condition on the temperature of the liquid at the interface. The
remaining condition ıTl D ıTg is useful only in the case we are interested in the
gas temperature fluctuations.

We have now prescribed all the equations and boundary conditions, which control
the fate of perturbations. We shall rewrite them using non-dimensional variables. We
choose the thickness of the layer as the length scale and d2= as the time scale. The
temperature scale is naturally given by d jˇj. Furthermore, as we are making a global
analysis of stability, we impose that disturbances evolve as exp.�t/; hence we write
the equations of motion:

8<
:
r � u D 0

�u D �rp C P�v
�T � uz D �T

(6.41)

since we take ˇ < 0. P is the Prandtl number of the liquid. Using the equation of
continuity together with the u D 0 conditions, we derive the following boundary
conditions on the z D 0 plane:

uz D @uz

@z
D 0 and T D 0 on z D 0 (6.42)

On the z D 1 plane, we should first make the stress condition (6.39) more explicit;
it yields




�
@vz

@x
C @vx

@z

�
� �0�T @ıT

@x
D 0; 


�
@vz

@y
C @vy

@z

�
� �0�T @ıT

@y
D 0 on z D 1

These conditions are completed by vz D 0. Using dimensionless variables, and mass
conservation, the three top boundary conditions give

uz D 0;
@2uz

@z2
� Ma

�
@2T

@x2
C @2T

@y2

�
D 0 (6.43)

where we introduced the Marangoni number:

Ma D �0j�T jjˇjd2



(6.44)

Finally, the boundary condition on temperature at z D 1 reads

@T

@z
C BiT D 0 (6.45)
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where Bi is the Biot number6

Bi D 4�T 3eq.d/d

�

The system (6.41) can be further reduced to two equations controlling the vertical
velocity and the temperature fluctuations; namely:

�
��u D P��u
�T D u C�T

(6.46)

where u � uz. Since the fluid layer is infinite in the x and y directions, we may
express the functions f .x; y; z/ D f .z/ exp.ikxx C ikyy/ and set k2 D k2x C k2y .
Thus,

� P.D2 � k2/2u D �.D2 � k2/u
.D2 � k2/T C u D �T

(6.47)

where D D @=@z. This is a system of sixth order, which is completed by the six
boundary conditions:

�
u D Du D T D 0 at z D 0

u D D2u C k2MaT D DT C BiT D 0 at z D 1
(6.48)

The stability of the fluid layer is determined by the set of eigenvalues �. It may
be shown that the �’s are all real negative numbers when the Marangoni number is
zero, hence the system is stable. When this number is increased, the real part of the
least-damped mode vanishes for some critical value Mac of the Marangoni number.
We assume that the associated eigenvalue remains real (the instability is assumed
not to be oscillatory). Thus doing, when Ma D Mac , � D 0, and we can determine
the solutions at the threshold of instability.

The solution of .D2 � k2/2u D 0 verifying u.0/ D Du.0/ D u.1/ D 0 is

u.z/ D A Œsinh.kz/C .k coth k � 1/z sinh.kz/� kz cosh.kh/�

6The Biot number is the ratio of two heat transfer coefficients. The heat transfer coefficient is a
flux surface density divided by a temperature; for instance, �l=d is the heat transfer coefficient of
the liquid layer, while �T 3 is that of the vacuum.
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We also find that

T .z/ D 1

4

�
3

k
z cosh.kz/Ck cosh k� sinh k

k sinh k

�
z2 cosh.kz/�z

sinh.kz/

k

�
�z2 sinh.kz/

� k2 sinh2 k C .Bi C 1/A.k/

k2 sinh k.k cosh k C Bi sinh k/
sinh.kz/

)

where A.k/ D k2 C k sinh k cosh k C sinh2 k. This solution verifies the boundary
conditions T .0/ D 0 and DT.1/C BiT .1/ D 0. Using these two solutions we can
express the Marangoni number as a function of the wavenumber k, as:

Ma.k;Bi/ D 8k.k � sinh k cosh k/.k cosh k C Bi sinh k/

k3 cosh k � sinh3 k
(6.49)

This function, plotted in Fig. 6.5 for various values of Bi, determines the minimum
value of Ma beyond which the instability sets in. We note that, in the ideal case
where Bi D 0, the critical value of the Marangoni number is Macrit D 79:607

reached at a wavenumber of kcrit D 1:993.
As we mentioned it at the beginning of this section, this instability has long been

confused with the Rayleigh–Bénard instability, which is driven by the buoyancy

Fig. 6.5 Critical curves for Marangoni-Bénard instability for various values of the Biot number
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force. However, as we shall see now, when the thickness of the layer is small enough,
the surface tension instability dominates over the buoyancy driven one.

Anticipating on the following chapter, we note that the Rayleigh–Bénard insta-
bility is controlled by the Rayleigh number

Ra D ˛jˇjgd4
�

which critical value, in similar conditions,7 is 669.
The dependence of the Rayleigh number with the fourth power of the thickness of

the layer, shows that for increasing values of d , the supercriticality of the Rayleigh–
Bénard instability is growing faster than that of the tension driven instability, which
grows only with the square of the thickness.

We may compute the thickness where the two instabilities are of similar strength.
The critical thickness for the tension driven instability is

dt D
�

Macrit��

�0j�T ˇj
�1=2

whereas it is

db D
�

Racrit�

˛gjˇj
�1=4

for the buoyancy driven one. For a given fluid under a similar temperature gradient,
these two thicknesses are equal at:

dbt D
s

Racrit�0j�T j
Macrit˛g�

As a numerical illustration, let us consider the case of pure water around 20 ıC.
At this temperature ˛ D 2:07 � 10�4 K�1, and using the linear fit of the surface
tension (6.38), we find that the critical thickness is 2.6 cm. Hence, a water layer a
few millimeters thick is destabilized by surface tension when heated from below.

6.4 Waves Interaction �

Another way to tackle instabilities is to interpret their development as the conse-
quence of the interaction of two waves with energies of opposite sign. The total
energy of the system stays constant but the amplitude of the two waves can increase

7This means the same boundary conditions on the bottom plate and on the top plate, stress-free and
fixed-flux conditions (this is for the case Bi D 0).
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indefinitely (in a linear regime, of course!). This approach has been introduced
in Fluids Mechanics by Cairns (1979), who adapted technics devised in plasma
physics.

6.4.1 The Energy of a Wave

There is no universal definition of the energy of a wave. Following Cairns’ work,
we shall define it as the work needed to make its amplitude increase from zero to a
given finite value A0. We assume that the passing wave causes a small displacement
of matter, which we denote by

�.x; t/ D A.t/ei.!0t�k0x/ : (6.50)

The associated pressure disturbance has a similar form. The function A.t/ is
assumed to vary slowly: the amplitude of the wave increases very progressively.
We express this “slowness” by claiming that

1

A

dA

dt
 !0 H) P� ' i!0� :

In order to define the work done to raise the wave, we assume that the displace-
ment (6.50) is the result of the action of the pressure forces, which act on both
sides of a surface. As long as the wave is not established, the pressure on both sides
differs; thus the work reads

W D
Z C1

�1
.p2 � p1/ P� dt

or, in complex notations,

W D 1

2
Re

�Z C1

�1
.p2 � p1/� P� dt

�
D Re

�
i!0

2

Z C1

�1
.p2 � p1/

�� dt

�

In a linear problem, all quantities are proportional and therefore we can write

�
p1 D D1.!; k0/A.t/e

i.!0t�k0x/
p2 D D2.!; k0/A.t/e

i.!0t�k0x/ (6.51)

let

.p2 � p1/
� D D.!; k0/A.t/e

�i.!0t�k0x/
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where D.!; k/ D D2.!; k/ � D1.!; k/. When the wave is established, p1 D p2
andD.!; k/ D 0 is the dispersion relation of the waves system.

Let us calculate the Fourier Transform of .p2 � p1/
�; we have

� Qp.!/ D
Z
D.!; k0/A.t/e

�i.!0t�k0x/ei!tdt D D.!; k0/e
ik0x QA.! � !0/

Since A varies slowly with t , QA.! � !0/ differs from zero only at low frequencies,
that is to say for ! � !0 
 0. In the neighbourhood of !0, we have

D.!; k/ D D.!0; k0/C .! � !0/

�
@D

@!

�
!0

C � � �

with D.!0; k0/ D 0, therefore

.p2 � p1/�.t/ D eik0x
Z

QA.! � !0/D.!; k/e
�i!t d! I

taking into account our remark about A, this integral is approximated by

.p2 � p1/
�.t/ D

�
@D

@!

�
!0

ei.k0x�!0t/
Z
.! � !0/ QA.! � !0/e�i.!�!0/t d!

D �i
�
@D

@!

�
!0

ei.k0x�!0t/ dA�

dt

From which we find that

W D !0

2

�
@D

@!

�
!0

Z C1

�1
Re.A

dA�

dt
/dt D !0

4

�
@D

@!

�
!0

jA0j2

The energy of a wave is therefore defined by

E D !0

4

�
@D

@!

�
!0

jA0j2 (6.52)

6.4.2 Application to the Kelvin–Helmholtz Instability

We now apply the preceding calculations to the Kelvin–Helmholtz instability
studied previously.

The dispersion relation (6.25) shows that two waves corresponding to !˙ are
possible. We easily calculate their energy
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Fig. 6.6 Change of the dispersion relation with the background velocity in a set-up prone to
Kelvin–Helmholtz instability. We see that as the background velocity gets close to the critical
velocity, a negative energy branch narrows the positive energy one. In the third plot, where V > Vc ,
unstable modes have imaginary frequencies and their wavenumber belongs to the interval limited
by the dotted lines

E˙ D !˙
�
@D

@!

�
!

˙

D 2!˙.!˙ � �akV/ D ˙2!˙
p
�

It therefore follows that for every k > 0, !C > 0 and EC > 0. If V  Vcrit

then !� < 0 and E� > 0; the energy of the two waves are of the same sign.
However, if V <	Vcrit, there appears a band of wavenumbers k for which !� > 0 and
thus associated with negative energy waves. Moreover, there exists a wavenumber
(k 	 3), such that the two waves are close to resonance, i.e.!C ' !�. As illustrated
in Fig. 6.6c, this resonance is at the origin of the band of unstable waves.

6.5 The Nonlinear Development of an Instability

Up to now we have studied the evolution of disturbances with infinitesimal
amplitudes and noted their exponential growth in the case of instability. Obviously,
this growth cannot continue indefinitely because the increasing amplitude inevitably
leads to non-negligible nonlinear terms. Their role might simply be to trigger the
damping of the instability and to insure a new equilibrium: this is the most simple
case that we shall find again in thermal convection in Chap. 7. In general, the
situation is more complex: for example, it often happens that a group of modes
are unstable because of the set-up. The question we are faced with then is to know
towards which solution the system is evolving: is it systematically towards the mode
with the highest growth rate? or is it that the nonlinear terms will decide the choice
of the final solution which, if it exists, should be stable? It is also possible that no
stable solution exists. If the system is chaotic, it wanders indefinitely without ever
returning to a point (in the phase space) previously visited.
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The nonlinear development of instabilities is a vast field, which would deserve
an entire book. The object of this section is thus more modest: we shall examine a
few of the simplest cases from which we can shape our intuition about the possible
developments of an instability.

6.5.1 Amplitude Equations

When we discussed global instabilities, we expressed the growth of disturbances in
the form:

@u
@t

D L.u/

by choosing a time dependence in e�t . We generalize this approach by writing

u.r; t/ D A.t/u0.r/ (6.53)

where A.t/ is the amplitude of the mode u0. If A is very small, we always have

PA.t/u0 D A.t/L.u0/

but since u0 is an eigenmode, L.u0/ D �u0, A thus evolves according to

PA.t/ D �A.t/ (6.54)

Such an equation is called an amplitude equation. This one is the simplest and its
solution A D A0e

�t is already known to us.
Now, let us suppose that u is always in the form (6.53), but that its growth is

determined by a nonlinear equation that we may write

PA.t/ D f .A/ (6.55)

But for small amplitudes, we have

f .A/ D f .0/C f 0.0/AC f 00.0/
2

A2 C f 000.0/
6

A3 C � � � (6.56)

Since A is the amplitude of a disturbance,A D 0 should be the equilibrium solution
such that f .A D 0/ D 0; therefore, f .0/ D 0. Further identification shows that
f 0.0/ D �. Hence, we rewrite the preceding equation as:

PA.t/ D �AC f 00.0/
2

A2 C f 000.0/
6

A3 C � � � (6.57)
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We can still progress in the determination of the coefficients of the Taylor expansion
of f by using the symmetries of the system. Imagine that the system is invariant in
the symmetry A ! �A, i.e. if A is a solution, �A is also a solution, then it is
obvious that f .�A/ D �f .A/ because of the linearity of @t . In this way all the
even derivatives of f are zero and (6.57) shortens to:

PA.t/ D �AC f 000.0/
6

A3 C � � � (6.58)

Setting L D �f 000.0/=6, the preceding equation is known as Landau equation:

PA.t/ D �A� LA3 (6.59)

and L is the Landau constant of the system(cf. Landau and Lifchitz 1971–1989,
Sect. 27).

6.5.2 A Short Introduction to Bifurcations

Landau equation describes the behaviour of many systems in Physics, especially
in Fluid Mechanics (we shall meet it again when discussing thermal convection in
Chap. 7). Thus, it is worth a little study, which will also allow us to introduce the
basic ideas of bifurcation theory. First of all, we shall assume that L > 0.

Assuming L > 0, (6.59) is easily solved: after dividing it by A3, it is solved for
1=A2, which gives

A.t/ D A0q
.1 � A20L=�/e�2�t C A20L=�

where A0 is the amplitude at t D 0. Figure 6.7 shows a plot of this solution.
By writing Landau equation in the form

dA

d�
D .� � LA2/A ;

we observe that the solution saturates thanks to the term in A3: the increasing
amplitude causes a reduction of the effective growth rate .� � LA2/. The final
amplitude is such that � � LA2 D 0, or

A D Aeq D
r
�

L (6.60)

We see that this solution exists only if � > 0. In the opposite case, A ! 0. This
situation can be summed up by a bifurcation diagram (Fig. 6.8) that outlines the
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Fig. 6.7 The solution of Landau equation when � D 0:5 and L=� D 1

Fig. 6.8 Bifurcation diagrams for Landau equation in the supercritical and sub-critical cases. Solid
lines indicate stable branches while dashed lines are for unstable ones

equilibrium solutions,8 namely the values ofA such that f .A/ D 0when the control
parameter � is varied. The control parameter is also known as the order parameter
in reference to phase transitions, where bifurcations are also playing an important
role. In fluid flows, this parameter is usually a number like the Reynolds one.

We now return to Landau equation and its possible equilibrium solutions.
f .A/ D 0 leads to

�A� LA3 D 0 H) A D 0 or A D ˙
r
�

L

8The equilibrium solutions are also called fixed points in the language of dynamic systems.
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These three solutions constitute the different branches of the diagram. It is then
necessary to examine their stability. For this, we perturb Landau equation by writing
A D Aeq C ıA; thus,

dıA

dt
D .� � 3LA2eq/ıA

The stability of each branch is given by the sign of � D � � 3LA2eq. If Aeq D 0,

� D �: the branch is stable if � < 0 and unstable if � > 0. If Aeq D p
�=L, the

system is in the bifurcated state and its perturbations evolve according to

dıA

dt
D �2�ıA (6.61)

Therefore, when this branch exists (if � > 0), it is stable (�2� < 0).
The bifurcation controlled by Landau equation is called a pitchfork bifurcation.

When L > 0, it is supercritical. If � passes from negative values to positive ones,
the system bifurcates from a solution that has become unstable (Aeq D 0) towards a
new stable solution (Aeq D p

�=L). The bifurcation takes place at the critical value
� D 0.

In some systems, the critical value of � is not zero but purely imaginary � D
i!: at the bifurcation point the system oscillates with a frequency !. This kind of
bifurcation is called a Hopf bifurcation. The behaviour of the system is very similar
to the Landau one and we propose its study as an exercise.

Let us now return to Landau equation and consider the case where Landau
constant is negative. In this case, non-zero equilibrium solutions exist only if � < 0.
The bifurcation is called sub-critical and we note from (6.61) that the bifurcated state
is always unstable (Fig. 6.8). The evolution from these branches cannot be described
by Landau equation (except in an initial phase where the amplitudes are small),
because the nonlinear cubic term strengthens the instability rather than reducing it.
We should then extend the development of f to the next order in amplitude, namely
the one in A5. This brings us to the consideration of a somewhat more complex
system, where we can find a finite amplitude instability.

6.5.3 Finite Amplitudes Instabilities �

We shall now analyse a system having a sub-critical bifurcation at � D 0 taking into
account theA5-term. The dynamics of the system is assumed to be controlled by the
following equation:

dA

dt
D �AC 2LA3 �A5 (6.62)
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where the coefficient of A5 has been set to �1 for simplicity (its negative value
is necessary for the instability to saturate). We could also, as we did for Landau
equation, explicitly solve this equation but this is not really necessary because the
drawing of the bifurcation diagram as well as the analysis of the stability of the
different branches allows a good understanding of the dynamics of such a system.

The points of equilibrium are the five solutions that cancel out the right-hand side
of (6.62), namely

A D 0 and A D ˙
q
L ˙

p
L2 C � D ˙A˙ (6.63)

We thus find the axis A D 0 plus a fourth-degree curve (see Fig. 6.9). In order to
find the stability of the different branches, we must determine the sign of the rate of
growth

� D �C 6LA2 � 5A4

for each equilibrium solution. The case of A D 0 is immediate. If A ¤ 0, we can
use the equilibrium equation � C 2LA2 � A4 D 0 to eliminate �; recalling the
expressions of A˙ given by (6.63), it turns out that

�.A˙/ D �4A2
p
L2 C �

Fig. 6.9 Bifurcation diagram
for a system endowed with a
subcritical bifurcation
obeying (6.62). Dashed lines
indicate unstable branches,
solid ones show stables
branches (we set L D 1)
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then �.AC/ < 0 and AC is stable whereas A� is unstable since �.A�/ > 0. The
existence of the solutions for A˙ obviously depends on � and we may verify that

� AC exists if � � �L2,
� A� exists if �L2 � � � 0.

Several conclusions about the dynamics of the system can now be drawn. If � <
�L2, branch A D 0 is absolutely stable: whatever the disturbance might be, the
system will return to this equilibrium. If 0 > � > �L2 three stable solutions are
possible: 0 and ˙AC. The system “will choose” according to initial conditions but
henceforth we can note that if the solution A D 0 is disturbed strongly enough, we
can make it bifurcate towards the other stable branches ˙AC. Although stable with
respect to infinitesimal perturbations the solution A D 0 is unstable with respect to
disturbances of finite amplitude, provided that this amplitude is large enough (the
same applies to the branch AC). We can illustrate this property by noting that the
equation of the dynamical system (6.62) can be written using a potential V�.A/ such
that

dA

dt
D �@V�.A/

@A

The diagram of V�.A/ for different values of � shows the “valleys” of stabilities and
the “peaks” of instability (see Fig. 6.10).

Finally, if � > 0, A D ˙AC are the only stable solutions. Figures 6.9 and 6.10
summarize the properties of this system.

Fig. 6.10 Left The potential V�.A/ D �A2=2�LA4=2�A6=6 for various values of �. The dashed
line shows a value of � such that 0 > � > �L2 where the potential has three local minima. Right
A view of the surface V .A; �/
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6.6 Optimal Perturbations �

6.6.1 Introduction

In the foregoing sections we categorized flow disturbances into two families: those
of infinitesimal amplitude which are controlled by a linear operator and those of
finite amplitude which require the solving of a nonlinear problem. However, on
the latter perturbation we discussed only the possible role of a finite amplitude
in the context of amplitude equations. We may thus wonder if, like in dynamical
systems of Sect. 6.5.3, there exist flows that are stable with respects to infinitesimal
perturbations but unstable with respect to some finite amplitudes ones and also
wonder how these finite amplitude perturbations are generated. These questions lead
us to present a recent progress of Fluid Mechanics that bridges the gap between the
two aforementioned categories of disturbances.

Let us first come back to small amplitude perturbations. We decided of the
stability of the flow when these perturbations were exponentially damped, that is to
say when their temporal evolution was controlled by the e�t -factor with Re.�/ < 0,
the instability criterion being the existence of a perturbation with a positive growth
rate. This condition for instability is sufficient of course but not necessary as we
shall see. We can indeed imagine the existence of other perturbations that are not
described by the eigenvalues of the disturbances operator, like algebraically growing
disturbances. One may even imagine situations where a flow is stable as far as
perturbations like f .r/e�t are concerned, but that would be transformed into an
unstable one by some slowly growing disturbances. This is precisely what has been
uncovered in the years 1980: some flows well known to develop turbulence but
otherwise known to be stable with respect to small amplitude perturbations have
been revealed as the seat of slowly growing perturbations that in the end completely
destabilize them. These perturbations are now known as optimal perturbations: the
linear analysis shows that they can be strongly amplified before disappearing, but
during the course of their growth they might transform the original flow into another
one that is exponentially unstable.

This scenario shows that finite amplitude disturbances may be spontaneously
generated by some small amplitude noise. The existence of optimal perturbations
explains why a flow like the cylindrical Poiseuille flow, which is stable linearly for
any Reynolds number, shows turbulence bursts when this number is over 	 103.
In this section we shall introduce the reader to this new page of Fluid Dynamics, a
page that has started being written 25 years ago.

6.6.2 Plane-Parallel Flows

Squire theorem told us that two-dimensional perturbations of plane-parallel flows
were the most unstable. But three-dimensional ones have other properties, unnoticed
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for a long time, that might also efficiently control the stability of flows as we shall
see.

Let us reconsider the disturbances that might affect a plane-parallel flow v D
V.z/ex and let us assume that the fluid is bounded only in the z-direction. We are
now considering perturbations of the same shape as (6.13) but we do not impose an
exponential time dependance. Thus we write:

f .r; t/ D f .z; t/eikxxCikyy (6.64)

for the general form of the perturbations. System (6.18) has now the more general
shape:

8̂̂
<
ˆ̂:

Œ@t C ikxU � �.D2 � k2/�vx C vzU
0.z/ D �ikxP

Œ@t C ikxU � �.D2 � k2/�vy D �ikyP
Œ@t C ikxU � �.D2 � k2/�vz D �DP
Dvz C ikxvx C ikyvy D 0

(6.65)

where k2 D k2x C k2y and D D @z. Eliminating pressure and the components vx and
vy we re-derive Orr–Sommerfeld equation for the vertical velocity vz:

Œ@t C ikxU.z/ � �.D2 � k2/�.D2 � k2/vz � ikxU
00vz D 0 (6.66)

We may check that this new form of Orr–Sommerfeld equation gives back (6.23)
which we derived previously. Since we now consider three-dimensional perturba-
tions, it is necessary to complete it with an equation for the spanwise vy component
of the velocity. Following tradition, we write the equation verified by the vertical
component of the vorticity!z D @xvy�@yvx . Using the first two equations of (6.65),
we easily find that

Œ@t C ikxU.z/� �.D2 � k2/�!z C U 0.z/ikyvz D 0 (6.67)

also called Squire equation. These two equations form a coupled system whose cou-
pling coefficient is proportional to ky which represents the variation of perturbations
in the third spanwise dimension.

Let us now write Squire and Orr–Sommerfeld equations in the following
symbolic form:

@

@t

�
�vz

!z

�
C
� D4 0

ikyU 0 D2

��
vz

!z

�
D 0 (6.68)

where we introduced the differential operators

� D D2 � k2; D2 D ikxU.z/ � �.D2 � k2/; D4 D D2.D
2 � k2/



228 6 Flows Instabilities

In order to understand the properties of the solutions of this system, it is useful to
study a much simpler problem but which shares many of the properties of (6.68).

6.6.3 A Simplified Model

System (6.68) is a differential system where space and time coordinates are coupled.
We shall uncouple these variables by forgetting space variations and focusing on
time evolution. For that, we consider the following simple system:

d

dt

�
x

y

�
D
��" 0

1 �2"
��

x

y

�
(6.69)

where " is the model parameter. We look for the temporal evolution of x.t/ and y.t/
whose initial values are .x0; y0/. The resolution of these two differential equations
is straightforward and we find the general solution:

�
x.t/ D x0e

�"t
y.t/ D .y0 � x0="/e

�2"t C x0
"
e�"t (6.70)

We might observe that at long times (t ! C1), these solutions vanish for any
initial conditions. The short time evolution, that is when "t  1 is on the contrary
sensitive to initial conditions. An expansion of the solution to first order in " gives

x.t/ D x0.1 � "t C O."2//

y.t/ D x0.t � 3

2
"t2 C O."2//C y0.1 � 2"t C O."2//

These expressions show that x.t/ starts decreasing and this is indeed what says the
general solution. However, this is not the case for y.t/. The first order expansion
shows that if x0 � y0, the solution y first increases at a rate controlled by x0.
Obviously, if initial conditions are such that x0  y0 then y.t/ also decreases.

Let us now consider initial conditions where y.t/ is increasing with time and
search the time tm where y is maximum. Using the general solution, we easily find
that the maximum of y is reached at time

tm D �1
"

ln

�
1C "y0=x0

2

�

as long as "y0=x0 > �1. If we assume that x0 	 y0 and "  1, we see that

tm ' ln 2

"
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so that the growing of y lasts longer when " is smaller. y then reaches the
amplitude

ym D x0

4"

This amplitude is therefore the larger, the longer is the growth. This expression also
shows that even if initial perturbations are small, they can be strongly amplified if
they are optimally chosen. We shall note however that this condition is not very
severe: in the simple case that we are studying we just need to avoid the case x0 
y0. Figures 6.11 and 6.12 illustrate the growth of the y component in the optimal
case for various values of ".

In general the amplification is measured by the energy gain, that is to say by a
quadratic function of the amplitude. In our case this gain is simply

G.t/ D x.t/2 C y.t/2

x20 C y20
(6.71)

Fig. 6.11 Growth of y.t/ for the solution (6.70) for various values of " with 0:1 
 " 
 0:01

when x0 D 1 and y0 D 0. In this case if t < ln 2=" the function is strictly increasing with time. It
reaches its maximum 1=4" at t D ln 2="
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For our optimal perturbations verifying x0 � y0, the gain reaches a maximum
close to

Gmax D 1

16"2

6.6.4 Back to Fluids: Algebraic Instabilities

In view of the foregoing example it is interesting to reconsider system (6.68). We
note that if perturbations are such that kx  1, ky D O.1/ and that � is small, we
qualitatively retrieve the foregoing system. The two diagonal operators are ‘small’
while the coupling term is of order unity. More rigorously, if kx=ky 	 1=Re 
1 we should expect that perturbations are amplified with a gain O.Re2/. This is
precisely what is found when one solves the full problem of disturbances verifying
Orr–Sommerfeld and Squire equations. Table 6.1 illustrates the characteristics of
optimal perturbations for a few classical plane-parallel flows. The analogy with the
simple system is clear if we set " D 1=Re.

The foregoing example shows us the possible existence of perturbations with
shear flows whose growth is algebraic. If Re � 1, the growth is not limited
neither in time neither in amplitude, but like exponentially growing disturbances the
nonlinear terms will stop (or modify) this growth. However, algebraic growth is slow
compared to an exponential growth. Therefore these perturbations are important
when all the eigenmodes are damped. This new type of perturbations redefines the
concept of flow stability. Indeed, as soon as these perturbations are able to reach a
nonlinear regime they modify the basic flow and represent a true instability of it.

6.6.5 Non-Normal Operators

This non-trivial property of disturbances originates from the nature of the operators
that govern their time evolution. Such operators like those of Orr–Sommerfeld–

Table 6.1 The energy gain of a few classical shear flows with the characteristics of the associated
optimal disturbances given by the streamwise kx and spanwise ky wavenumbers (data are from
Schmid and Henningson 2001)

Flow Gain (10�3) tmax kx ky

Plane Poiseuille 0.20 Re2 0.076 Re 0 2.04

Plane Couette 1.18 Re2 0.117 Re 36/Re 1.6

Cylindrical Poiseuille 0.07 Re2 0.048 Re 0 1

Blasius 1.51 Re2 0.778 Re 0 0.65



6.6 Optimal Perturbations � 231

Fig. 6.12 Time evolution of
the solution (6.70) when
" D 0:01, x0 D 1 and
y0 D 0. Note that the scale in
x is strongly dilated
compared to that of y

Squire (6.68) are said to be non-normal: their eigenfunctions do not make an
orthogonal basis (or not even a basis) of summable functions.

Let us consider again our simplified model and compute the eigenvectors
associated with the two eigenvalues �" and �2" of the operator. We easily find
that these two vectors read:

X1 D
�
"

1

�
; X0 D

�
0

1

�

We note that X1 � X2 D 1. The two eigenvectors are never orthogonal, whatever the
value of ". In addition, when " ! 0, the two vectors are no longer independent and
the matrix can no longer be diagonalized.

In fact it is precisely because the two eigenvectors are never orthogonal that short
time growth is possible.

To see this property, we briefly examine the case where the system (6.69) is
replaced by

d

dt

�
x

y

�
D
��" 0

0 �2"
��

x

y

�

that is to say when the coupling between components is suppressed. Solutions are
then
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�
x.t/ D x0e

�"t
y.t/ D y0e

�2"t (6.72)

The energy of these solutions is E.t/ D x20e
�2"t C y20e

�4"t and its temporal
derivative is

PE.t/ D �2"x20e�2"t � 4"y20e
�4"t ;

which is strictly negative. These solutions are therefore strictly decreasing. Associ-
ated eigenvectors are obviously orthogonal.

This remark shows that the coupling term is absolutely essential for the transient
growth of y.t/ to exist.

6.6.6 Spectra, Pseudo-Spectra and the Resolvent
of an Operator

6.6.6.1 Some Definitions

In order to better understand the nature of non-normal operators, it is necessary to
get acquainted with some properties of differential operators.

A first important characteristic of a differential operator is its spectrum. The
spectrum �.L/ of the linear operator L is the set of complex numbers � such that

� Id � L

is not invertible ( Id is the identity operator). Its complementary set in C is called the
resolvent set �.L/. It is the set of numbers where the operator

R� D .� Id � L/�1;

called the resolvent of L is defined.
The spectrum is divided in three parts: the point spectrum �p.L/ or the

eigenvalue spectrum, the continuous spectrum �c.L/ and the residual spectrum. The
residual spectrum �r.L/ is what remains of the spectrum when the point spectrum
and the continuous spectrum have been removed.

The point spectrum is the usual set of eigenvalues. It is defined as the set of
complex numbers such that

� Id � L
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is not an injection, namely a function in the image set of the operator may have more
than one antecedent by this operator. If we consider the null function, we retrieve
the usual property

L.f / D �f

of an eigenfunction associated with an eigenvalue �. The continuous spectrum is the
set of complex numbers where �Id � L is injective but not surjective (the operator
is not invertible when � belongs to the spectrum). The continuous spectrum is not
an eigenvalue spectrum and should not be confused with a continuous spectrum of
eigenvalues like that of the Rayleigh operator (6.20), which is a set of continuous
eigenvalues (i.e. belonging to the point spectrum).

Besides the spectrum, another useful concept is that of the norm of an operator.
It is based on the norm of the functions at hands. In Fluid Mechanics, interesting
functions are square-integrable functions, namely such that

Z b

a

f .x/2dx

exists. Œa; b� is the interval of definition of the function. Such an integral is usually
related to the kinetic energy of the system. We thus introduce the norm

kf k D
sZ b

a

jf .x/j2dx

of a function f . The norm of an operator is defined as

kLk D max
f

�kL.f /k
kf k

�

Mathematics show the following property: for complex numbers z not belonging to
the spectrum of L

k.z � L/�1k � 1

dist.z; �.L// (6.73)

Namely, the norm of the resolvent is larger than the inverse of the distance to the
spectrum.

We can now introduce the pseudo-spectrum �".L/ of the operatorL, or rather the
"-pseudospectrum, which is the set of complex numbers z such that

k.z � L/�1k � "�1 (6.74)
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6.6.6.2 Physical Interpretation of the Pseudospectrum

Let us consider an operator whose spectrum is only composed of eigenvalues.
The norm of its resolvent Rz goes to infinity when z approaches an eigenvalue.
z enters the "-pseudospectrum when the resolvent norm gets over "�1. The "-
pseudospectrum of an operator L is therefore a part of the complex plane limited
by a contour defined by " and which surrounds the eigenvalues (see Fig. 6.13).

Normal operators have a pseudospectrum that is in a neighbourhood of the
eigenvalues while non-normal operators have a pseudospectrum that extends far
away from the eigenvalues.

To give a picture, we may say that non-normal operators have an ill-defined
spectrum in the sense that high values of the resolvent occupy large parts of the
complex plane. On the contrary a normal operator has a pseudo-spectrum that
remains in the neighbourhood of the eigenvalues.

Let us now examine the relation between the non-normality of an operator and
the amplification of some disturbances. In order to do so, we consider the following
problem:

@f .x; t/

@t
D L.f / and f D f0.x/ at t D 0

Fig. 6.13 Isocontours of the
distance to the eigenvalue
spectrum of the Davies
operator d2

dx2
C .ax2 � bx4/,

with a D 3C 3i and
b D 1=16. This is a
Schrödinger equation with a
complex potential. As
indicated by (6.73), the
"-pseudospectrum is inside a
contour associated with the
value 1="
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We shall use the Laplace transform on time, Qf , of function f :

Qf .x; p/ D
Z 1

0

f .x; t/e�ptdt

Applying Laplace transform to the equation determining f , we get

Z 1

0

@f .x; t/

@t
e�ptdt D

Z 1

0

L.f /e�ptdt

so that

Qf D .p � L/�1f0 (6.75)

The solution for f is then derived from the inverse Mellin–Fourier transform,
namely

f .x; t/ D 1

2i�

Z cCi1

c�i1
Qf .x; p/eptdp

where c is real and larger than the largest real part of the eigenvalues of L.
The foregoing formula shows that the transient response is controlled by the

resolvent of L applied to the initial conditions f0. If the long time evolution of
f is a damping, that is if the eigenvalues of L are all in the half-plane Re.z/ < 0,
the transient response can nevertheless be large if the operator is non-normal and
the initial conditions chosen properly. Indeed, (6.75) shows that the non-normality
of the operator is not sufficient. Adapted f0 are also needed, meaning an optimal
choice.

Before ending this section it is interesting to consider another property of the
pseudo-spectrum in relation with the stability of flows. Indeed, the pseudospectrum
might also be viewed as the union of the spectra of all the operators L C E where
kEk � ". In other words, if we consider all the possible perturbations of the operator
L by any operator of norm less than ", the union of all the spectra of these operators
defines a part of the complex plane that is identical to the "-pseudospectrum of
L (Trefethen and Embree 2005). It may well be that L C E has unstable modes,
namely that perturbing the operator generates exponentially growing modes. This
is to say that non-normal operators are sensitive operators: a small change may
strongly modify their spectrum.

We here touch finite amplitude perturbations: the small change of the operator (of
order " for its norm) may be viewed as a finite-amplitude disturbance that slightly
modifies the background flow. If the operator is normal, nothing happens, but if it is
non-normal the new flow may be prone to some exponentially growing modes.

The concept of pseudo-spectrum has many other implications, especially in the
numerical calculation of the eigenvalues of matrices where it is associated with the
influence of round-off errors (e.g. Valdettaro et al. 2007). We shall stop here the
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discussion of this subject which would turn into pure mathematics and refer the
reader to specialized literature (e.g. Trefethen and Embree 2005).

6.6.7 Examples of Optimal Perturbations in Flows

After this mathematical digression, it is time to reconsider fluid flows. One may
wonder if these perturbations actually exist and if they have been observed. As
may be guessed from Table 6.1, plane-parallel shear flows are the best candidates
for showing such perturbations. The most remarkable example is certainly that of
streaks that appear in a boundary layer flow of Blasius type. Figure 6.14 shows the
formation of these structures. We note that the flow varies rapidly in the spanwise
direction y and slowly in the streamwise direction x. This is just the condition
kx=ky  1.

We may understand the appearance of streaks if we go back to Orr–Sommerfeld
and Squire (6.66 and 6.67). If we set � D 0 and kx D 0 then we get

@tux D U 0.z/uz (6.76)

.D2 � k2y/@tuz D 0 (6.77)

the solution of which are of the form

@tuz D Ae�ky z C Bekyz

Fig. 6.14 Streaks as a
consequence of the lift-up
effect in a Blasius boundary
layer. The flow is from left to
right. Note that the
disturbance generating the
streaks is characterized by a
spatial periodicity in the
spanwise direction and that
the streaks are themselves
unstable at some downstream
position (Photo by Elofsson
and Matsubara, in Elofsson
1998)
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but boundary conditions at infinity and at z D 0 (namely on the bounding plane)
imply that uz D 0 at these two places so that @tuz D 0, or that uz D Cst D uz.t D
0/ D u0z . The first equation (6.76) gives us the time evolution of ux :

ux D U 0.z/u0zeikyy t (6.78)

Hence a disturbance of the vertical velocity, characterized by the wavenumber ky ,
generates a local increase of the velocity of the flow in the streamwise direction.
This effect is now known as the lift-up effect. We indeed observe that ux may be
written

ux D U 0.z/�z eikyy

where �z D u0z t is the displacement of matter in the z direction induced by the
initial perturbation u0ze

ikyy . U 0.z/�z is just the first variation in z of the background
flow:

U.z C�z/ D U.z/C U 0.z/�z

The initial perturbation has therefore lifted by �z the background flow and yielded
in z C�z the flow field U.z/C ux with ux D U 0.z/u0z t eikyy . This disturbance thus
generates streaks of high and small speed whose wavelength is determined by the
condition of optimal growth. If the initial conditions are that of a flow disturbed by
some white noise, these perturbations emerge in the end.

The lift-up effect has been first described by the work of Ellingsen and Palm
(1975). This is the first mechanism that has been recognized as being associated with
optimal perturbations. However, there exist other mechanisms like Orr mechanism
where a vorticity disturbance controls the dynamics (see Farrell and Ioannou 1993).

6.7 Exercises

1. The interstellar cloud: We consider a sphere of radiusR filled with an ideal gas of
constant density and constant temperature. Establish the condition on the radius
which governs the stability of the sphere according to Jeans criterion. Propose
a physical interpretation of this criterion. Make a numerical application for an
interstellar cloud composed of molecular hydrogen, with a mass of 100 Mˇ and
a temperature of 50 K. What is the stability of this cloud if its diameter is 1 or 10
light-years?

2. Let us consider the flow of an inviscid and incompressible fluid such that

v D s˝.s/e'
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a) Recall the condition, on ˝.s/, of the stability of this flow with respect to
axisymmetric disturbances.

b) We now study the stability of the following flow:

8<
:
˝ D 0 s � �

˝ D AC B=s2 � � s � 1

˝ D ˝0=s
2 s � 1

(6.79)

where the constants A and B are such that ˝.s/ is continuous in the whole
domain occupied by the fluid.

We are interested in the non-axisymmetric two-dimensional disturbances.
The pressure and the velocity perturbations are of the form

f .s/eim'C�t

while vz D 0.
Give the linearized equations controlling the evolution of disturbances.

c) What boundary conditions are met by the disturbances at the interfaces at
s D � and s D 1 ?

d) Show that the radial velocity u of the perturbations verify the same differential
equation in the three regions and that it can be written

d

ds

�
s
d.su/

ds

�
D m2u (6.80)

Note that in each domain, @.s
2˝/

@s
D 2as where a is either zero or equal to A.

e) Give the expression of u.s/ in each subdomain (one should look for solutions
of the type s˛).

f) Determine the form of the pressure perturbations in each domain.
g) Show that the eigenmodes verify the following dispersion relation

�
�C im˝0

2

�2
D ˝2

0

�
�2m � 1
.1 � �2/2 C m

1 � �2
� m2

4

�
(6.81)

h) Show that the modesm D 1 and m D 2 are always stable.

3. Fjørtoft Theorem. Extract the real part of (6.21) and show, using (6.22), that
equation

Z b

a

�
.jD j2 C k2j j2/C k2j j2U 00.U � A/

j�C ikUj2
�

dz D 0 (6.82)

must be verified for any A. Deduce Fjørtoft theorem.
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Further Reading

There are two well-known monographs on flow stability. The one of Drazin
and Reid (1981), Hydrodynamic stability and the one of Chandrasekhar (1961),
Hydrodynamic and hydromagnetic stability. Drazin and Reid’s one is more modern
and pedagogical in its presentation. It also discusses the question of nonlinear
stability. However, the one of Chandrasekhar is very complete, especially detailed
in the derivation and makes a large use of variational principles. For a very recent
introduction to instabilities, the reader may also consult Hydrodynamic Instabilities
by Charru (2011).

On the applications of dynamical systems to Fluid Mechanics, we suggest Order
within chaos by Bergé et al. (1984), and also Instabilities, Chaos And Turbulence:
An Introduction To Nonlinear Dynamics And Complex Systems, by Manneville
(2004). As far as optimal perturbations are concerned, the reader may deepen the
subject with the monograph of Schmid and Henningson (2001) and the recent review
of Schmid (2007).
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Chapter 7
Thermal Convection

7.1 Introduction

Thermal convection is the transport of internal energy by the motion of a fluid.
Two types of convection are usually distinguished: free or natural convection and
forced convection. Natural convection is a fluid flow whose origin is always a
thermal imbalance: it disappears when the temperature gradients vanish. In forced
convection, on the other hand, the flow persists even if the temperature gradients1

are eliminated. In this chapter we shall concentrate on natural thermal convection,
which we simply call thermal convection. To begin with let us give some examples.

The most familiar example is doubtless that of the motion of water in a
container heated from below. Well before boiling (i.e. before the appearance of
steam bubbles), one may notice upward and downward motions in the liquid. These
motions are easily interpreted in a qualitative manner. The water heated at the
bottom of the container is lighter and rises to the surface, where it cools, falls down,
reheats and ascends again etc. In this cycle, the water carries the heat from the
bottom to the top of the layer. This is the phenomenon of natural thermal convection.
With this example, we understand that convection plays an important role in heat
exchanges realized or experienced by the fluids, in particular because it turns out to
be much more effective than thermal conduction.

Convection occurs at various scales, but it is mostly at the largest scales that it
easily arises. We shall see that, in many cases, an imposed temperature gradient
triggers fluid motion if the size of the fluid domain is large enough. In other words,
fluid motion is more efficient to transport heat on the large scale than on the small
scales where conduction dominates. This is why insulating materials that use air
as the insulating component (because of its small conductivity), are made of fibers

1Present wording tends to replace the terminology “forced convection” by advection. In this case,
temperature is more like a passive scalar and does not, or little, influence the fluid flow.

© Springer International Publishing Switzerland 2015
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(like glass wool for instance). Fibres reduce the scale of fluid flows and hamper heat
transport.

On much larger scales, like in the Earth atmosphere, thermal convection is very
common: clouds (like cumulus) keep their droplets of water because of rising flows
of thermal convection. Thermals, so praised by sail plane flight amateurs are also
an example of fluid flows generated by temperature gradients. At still larger scales,
thermal convection is the main heat carrier in the core of massive stars or in the
envelope of solar type stars. In giant planets, like Jupiter, the radial heat flow is
mainly insured by convectively driven fluid flows.

In the following we first retrieve basic properties of hydrostatic equilibrium of a
fluid submitted to vertical temperature gradient. Then, we introduce the Boussinesq
and anelastic approximations that much simplify the analysis. We complete the
case of equilibria by examining the so-called baroclinic situation which renders
equilibrium impossible. We proceed with the heart of thermal convection, namely
the Rayleigh–Bénard instability and its nonlinear development. As an illustration of
large-scale instabilities, we present the case of fixed-flux convection (a section that
may be skipped at first reading). Finally, the route to turbulent convection is briefly
discussed.

7.2 The Conductive Equilibrium

7.2.1 Equilibrium of an Ideal Gas Between Two Horizontal
Plates

In Chap. 2 we saw that a fluid in hydrostatic and thermal equilibrium verifies:

8<
:

�rP C �g D 0
r � .�rT /C Q D 0

P � P.�; T / and � � �.�; T /

(7.1)

In order to simplify the derivation as much as possible, we shall consider an ideal
gas with no heat source (Q=0), and for which we can neglect the variations of
thermal conductivity. Furthermore, we suppose that the fluid is contained between
two horizontal plates at a distance d apart. The upper plate has a temperature Tu and
the lower one Tl (see Fig. 7.1).

The temperature field verifies:

�T D 0
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Fig. 7.1 A schematic view of
the system

Z

z=d

z=0

Cold plate
at temperature Tu

Hot plate
at temperature Tl

Assuming that the equilibrium configuration is independent of the horizontal
coordinates x and y, we have

d2T

dz2
D 0 ” T D az C b

The boundary conditions T .0/ D Tl and T .d/ D Tu determine the two constants a
and b whence

Teq.z/ D Tl C .Tu � Tl/z=d (7.2)

which can also be written:

Teq.z/ D Tl.1 � z=z0/ where z0 D d=.1� Tu=Tl/ (7.3)

z0 is the temperature scale height. The hydrostatic (7.1) and the ideal gas equation
of state P D R��T lead to the expressions of P and �, namely

Peq.z/ D Pl.1 � z=z0/
m (7.4)

�eq.z/ D �l.1 � z=z0/
m�1 (7.5)

where the exponentm is given by:

m D gd

R�.Tl � Tu/

7.2.2 The Adiabatic Gradient

The solution (7.2) shows that in adjusting the temperature of the plates, we can
choose the temperature gradient in the fluid. Among all the possible gradients, there
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is one which plays a special role: namely that for which the fluid is isentropic. It
may be derived from the thermodynamic relation:

dh D Tds C dP=�

where s and h are respectively the specific entropy and specific enthalpy. If the gas
is isentropic, then ds D 0 and dh D dP=� so that rh D ��1rP D g. For the ideal
gas, h D cpT and thus

rT D g
cp

� .rT /ad (7.6)

which is called the adiabatic gradient. Its name is due to the fact that a fluid particle
moved adiabatically of �z experiences a temperature change of

�
dT

dz

�
ad

�z

We shall see below that the adiabatic gradient is tightly related to the threshold of
the Rayleigh–Bénard instability.

7.2.3 The Potential Temperature

In atmospheric sciences the concept of potential temperature is often used. This
temperature is defined as follows

Tpot D T

�
P0

P

�R
�
=cp

(7.7)

We note that if the gas is isentropic, this new temperature is constant. In fact, for an
ideal gas (see Sect. 1.7.1), we have

s D cp ln

"�
T

T0

��
P0

P

�R
�
=cp
#

C s0

whence

Tpot D T0e
.s�s0/=cp (7.8)

The potential temperature thus only depends on the entropy of the fluid. This shows
that for a perfect fluid
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Ds

Dt
D 0 H) DTpot

Dt
D 0

so that the potential temperature is conserved for each fluid particle when diffusion
phenomena are neglected. A little manipulation of the foregoing expressions shows
that

rTpot D Tpot

T
.rT � rTad/ (7.9)

The potential temperature gradient measures the gap between the actual temperature
gradient and the adiabatic gradient.

7.3 Two Approximations

The dynamics of a fluid whose motion is controlled by the temperature field is
governed by three partial differential equations. Its analysis is therefore much
more involved than the “simple” flow of an incompressible fluid. However, all
the additional physics connected to the temperature field does not have the same
importance in the dynamics of the system. Very often, notably when one deals
with liquids, equations can be much simplified. These simplifications come out
of approximations derived from asymptotic expansions. The most popular one
is the Boussinesq approximation, which was introduced qualitatively by Joseph
Boussinesq at the beginning of the twentieth century in a treatise, Théorie analytique
de la chaleur, (1903). Another one, called the anelastic approximation, is slightly
less restrictive and very useful in Astrophysics and Geophysics. Since we shall try
to keep our analysis as simple as possible, these approximations will be extremely
useful to us. We thus present them both.

7.3.1 The Boussinesq Approximation: A Qualitative
Presentation

When studying thermal convection in liquids, one is tempted to neglect the
variations of density. Liquids are indeed weakly compressible. However, such a
simplification cannot be done blindly because density variations are important in
the buoyancy force, which may drive the flow. Hence, J. Boussinesq suggested
to neglect all the density variations except in the buoyancy term. Thus, according
to this simplification, the perturbations of a hydrostatic and thermal equilibrium
described by (7.1) should be controlled by
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8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

�
Dv
Dt

D �rıP C ı�g C 
�v

DıT

Dt
C v � rTeq D �ıT

r � v D 0

ı�

�
D �˛ıT

(7.10)

Using the thickness of the layer d as the length scale and the associated diffusion
time for the time scale, i.e. d2=, these equations are often written in the following
dimensionless form

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

r � u D 0

Du
D�

D �rp C PRa�ez C P�u

D�

D�
� uz D ��

(7.11)

where � and p are the dimensionless disturbances of temperature and pressure. P is
the Prandtl number (see 1.36) and we introduced the Rayleigh number, defined by

Ra D ˛jTu � Tl jgd3

�

where ˛ is the coefficient of thermal expansion. In fact, the Rayleigh number
measures the temperature gradient imposed by the boundary conditions.

As proposed by Boussinesq, the density fluctuations appear only in the buoyancy
term. Moreover, they only depend on the temperature fluctuations (not on the
pressure ones). We also note that the diffusion coefficients are assumed to be
constant.

If these simplifications seem to be reasonable for a liquid, we may wonder to
what extent they can be applied to a gas. To answer this question, we need a more
rigorous derivation of (7.10) starting from the complete equations.
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7.3.2 The Asymptotic Expansions

Let us return to the equations of motion (1.13), (1.32) and (1.37), assuming that the
transport coefficients, viscosity and conductivity are constant.2

We thus assume that the fluid is governed by the following equations:

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

@�

@t
C r � �v D 0

�Dv
Dt D �rP C �g C 


�
�v C 1

3
r.r � v/

	

�De
Dt D ��T � Pr � v C D

�T Ds
Dt D �De

Dt C Pr � v

(7.12)

where D is the viscous dissipation. We shall also write this quantity 


2
.r W v/2 to

emphasize its quadratic nature and its dependence on velocity gradients. (7.12) is
also completed by the equations of state of an ideal gas:

�
P D R��T
e D cvT

(7.13)

First of all, we rewrite the equations (7.12) by subtracting the equilibrium solution
(7.3), (7.4), (7.5) and by introducing the fluctuations of �; P; T associated with the
fluid motion. The new equations are:

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

@ı�

@t
C r � Œ.�eq C ı�/v� D 0

.�eq C ı�/Dv
Dt D �rıP C ı�g C 


�
�v C 1

3
r.r � v/

	

.�eq C ı�/cv
�
DıT

Dt C v � rTeq
� D ��ıT � .Peq C ıP /r � v C 


2
.r W v/2

�T Ds
Dt D �cv

DT
Dt C Pr � v

ıP D R�.Teqı� C �eqıT C ı�ıT /

(7.14)

As usual, we move to dimensionless variables. We thus introduce the following
scales:

2Taking into account their variations with thermodynamic variables would not change the results
or the method, but would make the whole derivation more obscure. For this very reason, we shall
also neglect the second viscosity �.
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Length scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .d
Velocity scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Time scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .d=V
Temperature scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T�
Density scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .��
Entropy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cp

We write

Peq D R���T�P0; �eq D ���0; Teq D T��0

v D V u; ıP D ��V 2p1; ıT D T��1; ı� D ���1


 D ����; � D ��cp�; � D �0 C �1

and then obtain

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

@�1
@�

C r � Œ.�0 C �1/u� D 0

Du
D�

D � 1
�
rp1 � �1

�

gd
V 2

ez C �
Vd .�u C 1

3
rr � u/

D�1
D�

C u � r�0 D � 
Vd��1 � .��1/P0C�M 02p1

�
r � u C � M

02

2
�

Vd .r W u/2

�� Ds
D�

D �

�
D�
D�

C .��1/
�
.P0 C �M2p1/r � u

�M2p1 D �0�1 C �0�1 C �1�1

(7.15)

where

M2 D V 2

c2�
D V 2

�R�T�
and M 02 D V 2

cpT�
D .� � 1/M2

In these expressions, c� is the speed of sound at temperature T� andM is therefore
a Mach number. From these equations, we note that in order to recover (7.10), we
need:

➀ �0 = Cst,
➁ �1  �0,
➂ M 02  1;

➃ �1 D O.1/

We now deduce under which conditions the equations of fluid motion at the
Boussinesq approximation can be derived.
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Condition ➀ will be satisfied if the equilibrium configuration is such that the
variations in temperature are equally small. Equation (7.2) leads to

�0 D �00

�
1 � jTu � Tl j

Tl
z

�
; with �00 D Tl=T�

We therefore require that

" D jTu � Tl j
Tl

 1

Choosing �� D �i , we find from (7.5) that

�0 D 1C O."/

Condition ➃ requires the choice of the temperature scale T� to be such that the
temperature fluctuations ıT are of order unity and therefore of the order of the
imposed temperature difference jTu � Tl j. We therefore choose

T� D jTu � Tl j

which immediately implies that

�00 D O.1="/

but that

r�0 D O.1/

In order that the fluctuations of density be controlled solely by temperature, (7.15-d)
requires that

�1�0 D O.�0�1/ H) �1 D O."/

and that

M2  1

In this way we recover conditions ➁ and ➂ and we see that a second infinitesimal
parameter,M2, appears. In this case

�1 D � �1

�00
C O."2/
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and the fluid velocity must be small compared to that of sound. We note that 1=�00 D
O."/ is the coefficient of isobaric expansion of the fluid.3

Let us now rewrite (7.15) at leading order for each equation:

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:̂

r � u D 0

Du
D�

D � 1
�
rp1 � �1

�

gd
V 2

ez C �
Vd .�u C 1

3
rr � u/

D�1
D�

C u � r�0 D � 
Vd��1

�� Ds
D�

D �

�
D�
D�

0 D �0�1 C �0�1

(7.16)

We note that the velocity scale is still arbitrary. If we choose, as in (7.11), V D =d ,
the buoyancy term is O."gd3/ D O.Ra Pr/.

Finally, we observe that we did not pay attention to the diffusion terms �
Vd�u

and 
Vd�� . These terms are in fact retained in Boussinesq’s approximation and their

presence or absence can only result from new approximations. We can now rewrite
(7.16) as

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

r � u D 0

Du
D�

D �rp1 C PRa�1ez C P�u

D�1
D�

� uz D ���1

�1 C �00�1 D 0

(7.17)

which is identical to (7.11) if we recall that for liquids � 
 1.
The foregoing analysis shows that thermal convection of an ideal gas will be like

that of a liquid if (i ) the velocities stay small compared to that of sound and (ii) if
the scale height of the equilibrium configuration is large compared to the vertical
size of the volume occupied by the fluid.

Mathematically, the equations of motion at the Boussinesq approximation come
from a series expansion using two small quantities: the square of the Mach number
and the relative density variation across the layer, i.e. ˛jTu � Tl j.

3We can make the connection with the coefficient ˛ introduced for the liquids: we have ı�=� D
�˛ıT , let �1=�0 D �˛T

�
�1 D ��1=�00, therefore ˛ D 1=�00T�

D 1=Tl .
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7.3.3 Anelastic Approximation �

When one deals with thermal convection in stars or in the atmosphere of a planet,
the Boussinesq approximation is too restrictive because its second hypothesis
is usually not verified. The scale height is not large compared to the vertical
dimension of the system. However, the conditions of subsonic flows are still
realized. The approximation, which consists in allowing only the condition of very
subsonic motions, is called the anelastic approximation. In this approximation, as
in Boussinesq’s one, the sound waves are filtered out. The term anelastic means that
the “elasticity” of the fluid, which allows the propagation of sound waves, has been
neglected.

Working out the equations of fluid motion within this approximation is basically
simpler than the foregoing one; we just need to expand the solutions into powers of
the Mach number. Assuming V D Mc�, we observe from (7.15) that the buoyancy
term reads

��1
�

gd

M2c2�
D d

z�M2
D O.M�2/

where we noticed that the thickness and the scale height z� of the layer are of the
same order of magnitude. Since the buoyancy term should be of order unity, it turns
out that

�1

�
D O.M2/; p1 D O.1/

The equation of state results in

�1 D O.M2/

At zeroth order, the heat equation leads to

�0u � r�0 D �.� � 1/P0r � u (7.18)

while the equations of continuity and momentum, at the same order, yield

r � Œ�0u� D 0 (7.19)

Du
D�

D � 1

�0
rp1 � �0

1

�0

gd

c2�
ez C �

Mc�d

�
�u C 1

3
r.r � u/

�

where we set �1 D M2�0
1.

This system needs to be completed by the O.M2/ term, either of the energy
equation

�0
D� 0

1

D�
D �

�0

Vd
�� 0

1 � �.� � 1/p1r � u C �.� � 1/�0

2

�

Vd
.r W u/2 :
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or, of the entropy equation

�0
Ds0

1

D�
D 

Vd
�� 0

1 C .� � 1/�
2Vd

.r W u/2

The equation of state is also necessary:

�p1 D �0�
0
1 C �0�

0
1

where we set � 0
1 D �1=M

2 and s0
1 D s1=M

2. Combining (7.18) and (7.19) leads to
an interesting result, namely

u � rs0 D 0 ” @zs0 D 0 (7.20)

It means that the equilibrium solution must be quasi-isentropic, or that the temper-
ature gradient of the equilibrium must be close to the adiabatic gradient. This result
may be understood if we realize that our hypothesis (low Mach number) means
that the velocity stays small with regard to that of sound, which means that the
forcing of the flow is weak. Thus, when convection arises, the temperature gradient
is close to the adiabatic one, according to Schwarzschild’s criterion (see below
in Sect. 7.5.1). The consequence of this result is that we must take the isentropic
solution as the reference solution. This solution is always stable as we shall see
in Sect. 7.5.1. When convection appears, the temperature gradient is superadiabatic
and is imposed by the boundary conditions. In order to be able to make use of
the anelastic approximation, we should include within the disturbances (�1; �1), the
difference between the (unstable) equilibrium solution and the isentropic solution
(which is certainly a solution to static equations).

Finally, setting Re D Vd=�, the equations of the flow at the anelastic approxima-
tion are:

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂:

r � .�0u/ D 0

Du
D�

D � 1

�0
rp1 � �0

1

�0

gd

c2�
ez C 1

Re
�u

�0
Ds0

1

D�
D 1

Pe
�� 0

1 C � � 1
2Re

.r W u/2

�p1 D �0�
0
1 C �0�

0
1

(7.21)

where we introduced the Péclet number Pe, which is nothing but the Reynolds
number where the kinematic viscosity is replaced by thermal diffusivity. This
number is

Pe D Vd


D PRe
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(7.21) also show that the pressure fluctuation plays a part in the dynamics, as it
influences the buoyancy.

The preceding result has another consequence. If a flow strongly disturbs a
static solution which is far from the isentropic solution, then the fluid velocity
is necessarily comparable to that of the sound. Indeed, when the mixing due to
convection is important, the entropy distribution tends to be homogeneous. Hence,
if the initial state is far form an isentropic state, variations of the thermodynamic
variables may be of the order of the initial values, namely ı� 	 �eq, ıT 	 Teq

and ıP 	 Peq. Since pressure variations induced by the flow are 	 �v2, it turns
out that v2 	 Peq=� 	 R�Teq 	 c2s . Hence, the fluids velocity is not small
compared to that of the sound. This argument underlines the restriction of the
anelastic approximation, namely that the variations of the thermodynamic variables
must remain small compared to the values of the static solution. The use of the
anelastic approximation is therefore not always possible: for instance in the surface
layers of the Sun, the mean pressure and density drop to very small values leading
to small values of the sound speed. In this case convective velocities get close to
sonic values and reshape the mean density and pressure profiles.

In the case where the nonlinear effects are negligible, the anelastic approximation
eliminates the sound waves thus assuming that the density fluctuations are not
modified by the pressure ones.

7.4 Baroclinicity or the Impossibility of Static Equilibrium

We noted in Chap. 2 that the equilibrium of a fluid in a gravitational field can only be
achieved if P � P.�/, namely when the fluid is barotropic. Usually, P � P.�; T /

but in some situations T � T .�/ and thus P � P.�/. The example of an ideal
gas between two horizontal plates is typical of a non-barotropic fluid that is in a
barotropic configuration. Using (7.4) and (7.5), we see that

P / �
m

m�1 and T / �
1

m�1 :

Equilibrium is therefore possible.
If this condition is not satisfied, a torque density appears and produces vorticity:

the fluid cannot stay at rest. In order to illustrate this type of situation, called
baroclinic, we now study an example where the static equilibrium does not exist
if the temperature gradient is non-zero.

7.4.1 Thermal Convection Between Two Vertical Plates

Let us consider a system where the fluid is contained between two vertical plates
with different temperatures. This situation, where the temperature gradient is
perpendicular to the gravity, occurs in a double-paned window: the interior pane is
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warm and the exterior pane is cold (or vice-versa). We show below that the captive
air between the two panes develops a flow that attempts to re-establish thermal
equilibrium between the two panes by transferring the heat from the warm one to
the cold one.

In order to ease the analysis of this system, we consider a set-up where the
Boussinesq approximation can be applied. Furthermore, we assume the bounding
panes to be infinite in size and of uniform temperature, Tc and Tw, respectively.
These temperatures are taken only slightly different so that the flow is of small
amplitude and may be described by linear equations. This will allow us to write the
solution of the problem as a disturbance of the equilibrium state that exists when
Tc D Tw. We further simplify by considering only the steady state.

Considering (7.10), eliminating the time derivatives and the nonlinear terms, we
find

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

�rıP C ı�g C 
�v D 0

v � rTeq D �ıT

r � v D 0

ı�

�
D �˛ıT

(7.22)

In our case rTeq D 0 since the temperature is constant at equilibrium. The
temperature field ıT is therefore a solution of Laplace’s equation. Let x be the
coordinate perpendicular to the plates, we then have ıT � ıT .x/ and the solution
of Laplace’s equation immediately yields:

ıT .x/ D �.Tw � Tc/x=d

We have placed the warm plate at x D �d=2 and the cold one at x D d=2. The
expression of the temperature gives the expression of the density perturbation:

ı� D ˛.Tw � Tc/�0

d
x

The velocity field therefore satisfies:


�v � rıP D ˛.Tw � Tc/�0g
d

xez and r � v D 0

which is just Stokes’ equation with a forcing term. We look for a solution which
depends only on x; in this case r � v D 0 implies that vx D 0. As a consequence
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@ıP=@x D 0 and @ıP=@z D Gp , Gp being a constant. The z-component of the
momentum equation gives vz:

vz.x/ D Ax3 C Gp

2

x2 C Bx C C (7.23)

whereB and C are two constants of integration and A D ˛.Tw�Tc /�0g
6
d

. The boundary

conditions vz.˙d=2/ D 0 imply that B D �Ad2=4 but no constraint is imposed on
the constants C and Gp . We can lift this degeneracy by imposing that the mass flux
across a plane z DCst be zero. This condition is, in fact, realized when the domain
occupied by the fluid is finite; it expresses as

Z d=2

�d=2
vz.x/dx D 0

which implies that Gp D C D 0. Finally, the velocity field has the following form:

vz.x/ D �˛.Tw � Tc/�0g
24
d

x.d2 � 4x2/ (7.24)

The form of this solution is simply that of a parallel shear flow which does not
transfer heat since v � rıT D 0 (see Fig. 7.2). In a realistic case, the streamlines
are closed curves and a heat transfer exists. However, if the temperature difference
is large enough the preceding flow is unstable and produces turbulence. In this case
the convective heat transfer is quite significant. We see that the design of double-
paned windows should achieve a compromise between a great thickness, d , which
reduces the losses by conduction (by lowering the temperature gradient) and a
small thickness, which inhibits the development of instabilities and losses by fluid
motions.

Fig. 7.2 The flow generated
by a horizontal temperature
gradient within the air of a
double-paned window

ColdWarm
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7.5 Rayleigh–Bénard Instability

As we pointed it out while introducing the chapter, thermal convection is essentially
the result of an instability that develops thanks to an unstable temperature gradient.
Since this is an important source of fluid motion in Nature, we shall analyse it
in some details. However, before tackling the associated mathematics, we first
study a qualitative approach which leads to the Schwarzschild criterion, famous
in Astrophysics for locating the convection zones of stars.

7.5.1 Qualitative Analysis of Stability: Schwarzschild’s
Criterion

Like in Sect. 7.2.1, we shall first consider an ideal gas at rest between two horizontal
plates in a uniform gravity field. We further assume that

.Tu � Tl/=d > �g=cp (7.25)

namely, that the temperature gradient is sub-adiabatic. This means that the temper-
ature decreases more slowly with altitude than in the case the gas were isentropic.

Let us now consider a fluid element located at an altitude z, and that we artificially
displace, by �z, as it could result from a spontaneous fluctuation of the system.
Assuming that the displacement is sufficiently fast so that no heat exchange with
the surrounding medium takes place, the element undergoes an adiabatic expansion;
its temperature changes to

Tel.zi C�z/ D Tel.zi /C�z

�
� g

cp

�

while that of the surrounding medium is

Tenv.zi C�z/ D Tenv.zi /C�z

�
Tu � Tl

d

�

Noting that Tel.zi / D Tenv.zi / and using (7.25), we find that

�z > 0 H) Tel.zi C�z/ < Tenv.zi C�z/

�z < 0 H) Tel.zi C�z/ > Tenv.zi C�z/

In other words, if a fluid element is artificially raised (alternatively, moved down),
it will be colder (alternatively, warmer), than its environment. During this motion
the fluid particle is always in pressure balance with its environment. Thus a colder
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element is denser than the environment while a warmer one is less dense. The
foregoing inequalities show that the buoyancy force pulls the fluid element back
to its original equilibrium position. The fluid’s equilibrium is stable.

Let us now consider the opposite case where

.Tu � Tl/=d < �g=cp (7.26)

The temperature gradient is now termed as super-adiabatic. The temperature
decreases faster with altitude than if controlled by the adiabatic gradient. The
difference in temperature between the fluid element and the surrounding medium
is now reversed with respect to the preceding case:

�z > 0 H) Tel.zi C�z/ > Tenv.zi C�z/

�z < 0 H) Tel.zi C�z/ < Tenv.zi C�z/

This time an element which is displaced upwards will be warmer than the ambient
medium and the buoyancy force will enhance this motion. Similarly, a displacement
downwards is also amplified by the buoyancy force. Disturbances are thus amplified
and the equilibrium of the fluid is now unstable (see Fig. 7.3).
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∇T∇Tad

∗

∗∗

∗

∗∗
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B

d
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DB’

D’

a
Z

T

∇T

∇Tad

∗

∗

∗

∗

∗

∗

A

B

d

C

D

b

B’

D’

Fig. 7.3 An illustration of Schwarzschild’s criterion: (a) the sub-adiabatic case: a fluid element
moved from A to B (upwards) becomes colder than the surrounding fluid which is at temperature
B’ (according to the orientation of the temperature axis, B is below B 0). It is brought back to
its initial position by the buoyancy force. Similarly, a fluid element moved from C to D (thus
downward) is hotter than the surrounding fluid and is pushed upwards by the buoyancy force. Thus,
this temperature profile is stable. (b) The super-adiabatic case: a fluid element moved (downwards)
from A to B becomes colder than its environment whose temperature is that of B’. The buoyancy
now helps this motion and the fluid element continues downwards. Similarly, an initial rise from
C to D let the fluid element warmer than its environment and the buoyancy force also helps this
motion. The fluid equilibrium is now unstable
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The foregoing analysis shows the crucial role played by the adiabatic gradient.
When the temperature gradient is equal to the adiabatic gradient the equilibrium is
neutral: disturbances are neither damped nor amplified. The criterion

@zT � .@zT /ad � 0 ” stability (7.27)

is called Schwarzschild’s criterion. Note that if we use the potential temperature
(7.7), Schwarzschild’s criterion reads

@zTpot � 0 ” stability (7.28)

or, since potential temperature only depends on entropy,

@zs � 0 ” stability (7.29)

Schwarzschild’s criterion determines the stability of the equilibrium of a perfect
fluid. Indeed, in the preceding discussion, we neglected thermal conductivity and
viscosity. The thermal conductivity, by reducing the differences in temperature,
and the viscosity, by inhibiting the displacement, both contribute to the damping
of perturbations. However, taking into account, quantitatively, these effects is not a
simple game: a conventional stability analysis, as those of Chap. 6, is needed and
this is our next step in the study of convection.

7.5.2 Evolution of Disturbances

Our first effort will be to derive the equations governing the evolution of perturba-
tions under the influence of diffusion but in a simplified set-up where the Boussinesq
approximation is valid with the further assumption (to be removed later) of a two-
dimensional velocity field. We thus return to (7.11) and consider a 2D velocity
like:

u

ˇ̌
ˇ̌̌
ˇ
ux.x; z; t/
0

uz.x; z; t/

This allows us to introduce the stream function  such that

ux D �@ 
@z
; uz D @ 

@x
(7.30)
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observing that

u D r � . ey/ D r � ey; r � u D �� ey

and taking the curl of the momentum equation, we obtain the system

8̂̂
<̂
ˆ̂̂:

@� 

@�
� PRa

@�

@x
� P�� D J Œ� ; �

@�

@�
� @ 

@x
��� D J Œ�;  �

(7.31)

where we note that the nonlinear terms appear in the form of a Jacobian, namely

J Œf; g� D @f

@x

@g

@z
� @g

@x

@f

@z

At first, we consider disturbances of infinitesimal amplitude; their evolution is
governed by linear equations

8̂
ˆ̂<
ˆ̂̂:

@� 

@�
� PRa

@�

@x
� P�� D 0

@�

@�
� @ 

@x
��� D 0

(7.32)

To solve such a system we develop the solutions in Fourier modes as follows:

 D  k.z/e
ikxC�t ; � D �k.z/e

ikxC�t (7.33)

If we observe that

� �! D2 � k2; D D @

@z

@

@x
�! ik;

@

@�
�! �

then (7.32) becomes

8<
:
.D2 � k2/.P.D2 � k2/� �/ k C ikPRa�k D 0

.D2 � k2 � �/�k C ik k D 0

(7.34)
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7.5.3 Expression of the Solutions

The vertical profile of the perturbation,  k.z/ and �k.z/, is therefore given by the
solutions of the sixth order linear differential system (7.34). These solutions are in
the form:

�
 

�

�
D

6X
nD1

An

�
pn
qn

�
e˛nz (7.35)

where f˛ngnD1;6 are the roots of the polynomial

.˛2 � k2 � �/..˛2 � k2/P � �/.˛2 � k2/C k2PRa D 0 (7.36)

The solutions of this third degree equation in ˛2 give the expressions of the roots as
a function of �. We then require that the solution satisfy the boundary conditions.
Coefficients An, being non-zero, the determinant of the 6 � 6 system thus formed
must be zero. This yields the dispersion equation �.k/ of the modes of the system.
By examining the dependency of � as a function of k and Ra, we can find the
condition of existence of unstable modes for which Re.�/ > 0. This method is the
general one. It is quite arduous as we easily imagine.

We shall avoid momentarily these difficulties by considering a case where we can
shortcut this general way. This is possible when the fluid meets stress-free boundary
conditions on both bounding plates. This configuration is certainly not the most
realistic but it is very educational.4

We recall that for such conditions, the two surfaces are fixed planes and
disturbances satisfy:

8<
:

vz D 0

�xz D �yz D 0

at z D 0; z D d (7.37)

for the velocity. We further assume that the bounding plates are perfect conduc-
tors so that their temperature is fixed and no perturbation is allowed there (see
Sect. 1.8.2). Thus

� D 0 at z D 0; z D d (7.38)

for the temperature.

4We could, however, approach such a set-up by confining, for example, an oil layer between a layer
of mercury in z < 0, and a layer of liquid sodium in z > d !
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Noting that �xz D 0 at a fixed z implies that @x�xz D 0 on the same plane, using
mass conservation r � v D 0, we find that @2xvz � @2z vz D 0 at the bounding plate.
Since vz D 0 there, the stress-free boundary conditions imply that

@2vz

@z2
D 0 at z D 0; z D d (7.39)

We can now derive the boundary conditions satisfied by  k on the planes z D 0,
z D d . According to (7.30) we find

 k D D2 k D 0 at z D 0; z D d (7.40)

By using the differential equations (7.34), we find that all the even derivatives of  k
are zero on the z D 0; z D d planes and that the same is true for �k :

D2m k D D2m�k D 0 at z D 0; z D d (7.41)

for allm 2 N. Recalling that  k and �k are linear combinations of exponentials, we
note that (7.41) imposes a severe constraint on the solution. Actually, the functions

sin.n�z/; n 2 N

are the only linear combination of exponentials that verify these conditions.
Therefore we have no choice,  k and �k must be written like

 k.z/ D
X
n

Akn sin.n�z/ and �k.z/ D
X
n

Bkn sin.n�z/

where n is a (positive) non vanishing integer.

7.5.4 Criterion of Stability

The foregoing results give the value of ˛ without solving (7.36). Actually, setting the
value ˛ D n� in (7.36) yields an equation for �, the frequency of the eigenmodes.
Setting

`2 D �2n2 C k2

(7.36) is changed into

�2 C `2.P C 1/�� P
�
k2Ra

`2
� `4

�
D 0
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whose solutions are

�˙ D `2.P C 1/

2

 
�1˙

s
1C 4P

`4.P C 1/2

�
k2Ra

`2
� `4

� !
(7.42)

We observe that the eigenmode associated with �� is always damped since
Re.��/ < 0. On the other hand, the other mode can be amplified. If

k2Ra

`2
� `4 > 0

then, Re.�C/ > 0. This inequality shows the existence of a critical Rayleigh number
Rac which is such that if Ra > Rac some perturbations grow. This critical Rayleigh
number depends on the wavenumber of the perturbation and we easily get from the
previous inequality that

Rac.k; n/ D `6

k2

In Fig. 7.4, we plot Rac.k; n/ for the first values of n, thus showing a few critical
curves. Among them, the n D 1 is the most important, since its minimum gives
the true critical Rayleigh number below which every disturbance is damped out. We
shall evaluate this minimum from the function

Rac.k; n D 1/ D .�2 C k2/3

k2

A simple calculation shows that its minimum value occurs at the wavenumber

kc D �p
2

(7.43)

Fig. 7.4 Critical curves of the most unstable modes
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which is the critical wavenumber. The value of the Rayleigh number is:

Rac D 27�4

4
' 657:51

Thus if Ra < Rac all modes are damped and the fluid layer is in stable equilibrium,
while if Ra > Rac , there is at least one growing mode starting thermal convection.

7.5.5 The Other Boundary Conditions �

What happens if we apply more realistic boundary conditions to the velocity field?
For example those existing in a laboratory experiment where the fluid is confined
between two solid plates on which the velocity vanishes? In this case (7.37) is
replaced by

vx D vy D vz D 0 at z D 0; z D d (7.44)

These conditions lead, like the preceding ones, to two conditions on vz:

vz D @zvz D 0 at z D 0; z D d (7.45)

We have seen before that vz is a linear combination of exponentials; in the present
case, there is no simple linear combination that satisfies these boundary conditions.
We must, therefore return to (7.36) and its general solution. Equation (7.36) is a
third degree polynomial equation in ˛2, which solutions have no simple expressions
in general. However, we just wish to determine the effects of the new boundary
conditions on the critical Rayleigh number. For this, we set Ra D Rac and � D 0.
It may be shown indeed that � vanishes at the stability threshold. This property,
which we demonstrate in the box below, is known as the principle of the exchange
of stability (Chandrasekhar 1961). The three roots in ˛2 of (7.36) are then easily
found.

˛21 D �k2.R � 1/; ˛22;3 D k2.1CR e˙i�=3/ (7.46)

where we have set R D Ra1=3k�4=3. Let us assume that R is greater than unity and
therefore that all ˛ are complex. Noting that ˛2 is the complex conjugate of ˛3, we
write

˛1 D ˙ia; ˛2 D ˙˛; et ˛3 D ˙˛� (7.47)

The general solution of the problem is thus

�
 

�

�
D
�
p

q

�
eiaz C

�
p

q

��
e�iaz C � � �
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that we can also write as

�
 

�

�
D A1 cos az C A2 sin az C A3 ch˛z C A�

3 ch˛�z C A4 sh ˛z C A�
4 sh ˛�z

(7.48)

In this expression we grouped the complex conjugate terms since the solution is
real.

We now require that this solution satisfy the boundary conditions on the planes
z D 0 and z D 1. It is advantageous to shift the boundaries to z D ˙1=2 so
that we can benefit from the symmetries of the functions of expression (7.48). The
cosine part of the solutions is symmetric with respect to z D 0 while the sine part
is antisymmetric. If we write the boundary conditions in z D ˙1=2, by adding and
subtracting the equations, the symmetrical and antisymmetrical parts separate. For
the symmetrical part, let us write

�
 

�

�
D p1

�
1

q1

�
cos az C p2

�
1

q2

�
ch˛z C p3

�
1

q3

�
ch ˛�z :

The boundary conditions then lead to the following equations:

8<
:
p1 cosa=2C p2 ch ˛=2C p3 ch˛�=2 D 0

p1q1 cosa=2C p2q2 ch˛=2C p3q3 ch˛�=2 D 0

�p1a sin a=2C p2˛ sh˛=2C p3˛
� sh ˛�=2 D 0

(7.49)

This system has a non-trivial solution if and only if its determinant is zero, namely

ˇ̌̌
ˇ̌
ˇ

1 1 1

q1 q2 q3

�a tan a=2 ˛ th˛=2 ˛� th ˛�=2

ˇ̌̌
ˇ̌
ˇ D 0

after some simple rearrangements. We get the expression of the qi with (7.34),
namely

q1 D ik

˛21 C k2
D i

kR

q2 D ik

k2 � ˛22
D � i

kR
e�i�=3

q3 D ik

k2 � .˛�
2 /
2

D � i

kR
ei�=3
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which allows us to simplify the determinant as

ˇ̌
ˇ̌̌
ˇ

1 1 1

1 .i
p
3 � 1/=2 �.ip3C 1/=2

�a tan a=2 ˛ th˛=2 ˛� th˛�=2

ˇ̌
ˇ̌̌
ˇ D 0 (7.50)

Note that a and ˛ are two functions of Rac and k. By using the preceding equation
we can determine for each value of k the corresponding value of Rac . We can then
draw the critical curve Rac.k/ whose form is similar to that of Fig. 7.4. Of course
the solution of (7.50) can only be found numerically.

The critical curve Rac.k/ goes through a minimum when

k D kc D 3:11632355 and Rac D 1707:76178 (7.51)

We note that the critical Rayleigh number is higher than in the preceding case: this
agrees with intuition since the friction on the walls demands a greater forcing in
order to start the flow. We also observe that the streamlines are quasi-circular since
�=2 D �=kc 
 1 (see Sect. 7.6).

In the foregoing calculation we focused on the modes which are symmetric
with respect to the mid-layer plane. To be complete we should now examine the
antisymmetric modes. The equation giving the critical Rayleigh number of these
modes as a function of k is of the same form as (7.50) where it suffices to replace the
tangents with cotangents. Its solution shows that the curves Rac.k/ have an absolute
minimum at kc D 5:365 where Rac D 17610:39. Clearly, antisymmetric modes
are more difficult to destabilize and the true critical Rayleigh number is therefore
Rac D 1707:76178.

The calculation of antisymmetric modes is, however, not denied of interest
because it allows us to obtain the critical Rayleigh number when one of the
boundaries is no-slip and the other is stress-free. Indeed, we showed that on a
bounding plane with stress-free conditions all the even derivative of  are zero.
This is precisely the property of an antisymmetric solution at mid-layer, at z D 0.
Thus the antisymmetric mode between z D �1=2 and z D 0 is the same as the
solution meeting a no-slip boundary at the bottom and a stress-free one at the top.
Conversely, if we know the solution meeting no-slip boundary conditions on the
bottom and stress-free one on the top, we may obtain the antisymmetric solution
by antisymmetrizing it. Thus the critical Rayleigh number associated with mixed-
type boundary conditions will lead to the one associated with no-slip boundary
conditions and anti-symmetric modes if we double the thickness of the layer and
the temperature difference (so as to preserve the temperature gradient). Therefore

Rac.antisym:/ D 17610 D ˛.2�T /g.2d/3

�
D 16

˛�T gd3

�

D 16Rac.no � slip=stress � free/
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which gives Rac.no-slip/stress-free/ D 1100:65, an intermediate value between the
two preceding cases. The critical wavenumber is half of the antisymmetric modes.
Indeed, the dimensional wavenumber is the same as the one of antisymmetric modes
but the nondimensional one is scaled with a thickness which is half-size. Thus,

kc.no � slip=stress � free/ D kc.antisym:/=d

1=.d=2/
D kc.antisym:/

2
D 2:68

which is also intermediate between the no-slip and stress-free values.

The principle of the exchange of stabilities �

The idea of an exchange of stability at a critical value of a parameter, like the Rayleigh
number, is due to Poincaré. It has been popularized by Chandrasekhar in his monograph on
hydrodynamic stability. The principle is of course a theorem. It says that at the threshold of
stability perturbations are stationary, i.e. non-oscillatory so that �.Rac/ D 0.
To show this result, we start from (7.34) and set � D .D2 � k2/ . It turns out that:

8<
:
.D2 � k2/�C ikRa� D �

P �

.D2 � k2/� C ik D ��

(7.52)

We complete this system by the following boundary conditions:

 D 0; D D 0 or D2 D 0; � D 0

From the definition of �, we get

Z 1

0

 �D2�dz D
Z 1

0

j�j2dz C k2
Z 1

0

� �dz

We then multiply the first equation of (7.52) by  � and integrate over the thickness; using the
preceding equality we now get:

Z 1

0

j�j2dz C ikRa

Z 1

0

� �dz C �

P

Z 1

0

.jD j2 C k2j j2/dz D 0

Similarly, using the equation of temperature, we get

Z 1

0

.jD� j2 C k2j� j2/dz � ik

Z 1

0

 ��dz C �

Z 1

0

j� j2dz D 0

We now multiply this equation by Ra and add it to the foregoing one; we obtain:

Z 1

0

�
Ra.jD� j2 C k2j� j2/C j�j2� dz � 2kRa

Z 1

0

Im.� �/dz

C �

P

Z 1

0

.jD j2 C k2j�j2 C RaPj� j2/dz D 0 (7.53)

This last equality shows that when Ra is positive then Im(�/=0 since every term of (7.53) is

real except � and the coefficient of � cannot be zero. Thus if Ra D Rac then � D 0.
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7.6 Convection Patterns

In the foregoing section, we presented the physical conditions which lead to the
development of thermal convection. We may now wonder about the shape of the
flows that replace the unstable hydrostatic equilibrium. Thus after discussing the
eigenvalues of the problem (i.e. the growth rate of the instability), we shall now
focus on the eigenmodes. Actually, since we are still dealing with linear quantities,
we may easily, for a while, consider three-dimensional perturbations.

7.6.1 Three-Dimensional Disturbances

Let us assume that the disturbances have the form

u D u0.z/e��CikxxCikyy

Equation (7.11), when linearized, read

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�ux D �ikxp C P.D2 � k2/ux
�uy D �ikyp C P.D2 � k2/uy
�uz D �Dp C RaP� C P.D2 � k2/uz

Duz C ikxux C ikyuy D 0

.D2 � k2 � �/� D �uz

(7.54)

where we set k D
q
k2x C k2y . If we use Squire’s transformation (see Chap. 6), then

we set

k Qu D kxux C kyuy

and we easily show that the preceding system leads to

8̂
<̂
ˆ̂:

�Qu D �ikp C P.D2 � k2/Qu
�uz D �Dp C RaP� C P.D2 � k2/uz

Duz C ik Qu D 0

.D2 � k2 � �/� D �uz

(7.55)

By eliminating Qu, we find the two following equations

�
ŒP.D2 � k2/� ��ŒD2 � k2�uz D k2PRa�
.D2 � k2 � �/� D �uz

(7.56)

which are strictly identical to (7.34) if we replace uz by ik k .
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The conclusion of these little calculations is that the three-dimensional distur-
bances have exactly the same critical Rayleigh number as their two-dimensional
counterpart. This number does not depend on the orientation of the wavevector k.

If then we increase the Rayleigh number beyond critical value, we destabilize
all the modes which have a wavevector of modulus kc . The flow which appears,
depends on the wavevectors selected in the final solution. This selection depends on
the horizontal boundary conditions and on the stability of various possible solutions.
We shall not discuss this thorny and wide subject, and will restrict ourselves to
describing several solutions that are observed in Nature.

7.6.2 Convection Rolls

Convection rolls are nothing but the two-dimensional solutions. Let us write the
temperature perturbation as

�.x; z/ D A sin�z cos kcx

From this expression and the last equation of (7.56) we derive uz and then ux from
the equation of continuity. Hence, it follows

ux D �3A�
2

p
2

cos�z sin kcx and uz D 3A�2

2
sin�z cos kcx

This solution is illustrated in Fig. 7.5.

7.6.3 Other Patterns of Convection

In order to get other patterns of convection, it is sufficient to combine in a linear
manner several wave vectors of different directions. Let us consider a temperature
disturbance of the form:

ıT D A.cos kcx C cos kcy/ sin�z

Fig. 7.5 Shape of isotherms for roll convection near the threshold of stability. Boundary condi-
tions are stress-free for the velocity and fixed temperature
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a b

Fig. 7.6 Square (a) or hexagonal (b) convection cells viewed with their isotherms. Dotted lines
are for ıT < 0 and solid lines for ıT > 0

This is the linear combination of two perpendicular waves of the same amplitude. If
we look for the points of the maximum of ıT , these are

xnm D 2�m

kc
ynm D 2�n

kc

where m and n are integers. These maxima draw a network of squares. The
convection flow thus appears as a set of square cells covering the horizontal plane
(see Fig. 7.6a). Another pattern is however possible, if we use a symmetry frequently
found in Nature, namely the invariance by rotations with a 2�=3 angle. This
symmetry indeed leads to hexagonal patterns. We retrieve a convection flow with
this symmetry by superimposing three waves whose wave vectors make an angle of
2�=3 between them:

k D kc

ˇ̌
ˇ̌1
0
; kc

ˇ̌
ˇ̌ cos 2�

3

sin 2�
3

; kc

ˇ̌
ˇ̌ cos 4�

3

sin 4�
3

:

This leads to the following field for the temperature fluctuations:

ıT D A sin�z
h
coskcx C cos.kc.�x=2C y

p
3=2//C cos.kc.x=2C y

p
3=2//

i
(7.57)

As expected, the isotherms of this solution, taken in a plane at constant z, display
hexagonal cells as shown in Fig. 7.6b.
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7.7 The Weakly Nonlinear Amplitude Range

When we impose a Rayleigh number greater than the critical value, all the
disturbances belonging to the unstable band grow exponentially. But those of
wavelength �c grow the fastest. Therefore, we may expect that these modes control
the dynamics of the system. Thus if we wish to have a first view on the dynamics of
thermal convection we may focus our attention on these modes and try to determine
how their amplitude saturates at a finite value. For this we should take into account
the nonlinear terms that we have overlooked until now.

7.7.1 Periodic Boundary Conditions

In order to simplify as much as possible the following analysis, we again restrict
ourselves to the two-dimensional case, with which we are now well acquainted. In
addition, we also “isolate” the mode of wavelength �c by imposing to our system
periodic horizontal boundary conditions. Indeed, in this case all the functions satisfy
f .x/ D f .x C L/, where L is the length of our periodic “box”. From (7.33) this
implies that

eikL D 1 or k D 2m�

L
; m 2 N

so that the possible horizontal wavenumbers k now form a discrete set. It is then easy
to choose a box length and a Rayleigh number so that only one mode is unstable.
For example, if we take L D 2

p
2 and Ra D 1:5.27�4=4/ the mode corresponding

to k D kc D �=
p
2 is the only unstable one.

These boundary conditions may seem rather artificial, but more realistic bound-
ary conditions would not change the situation dramatically. The form of the
horizontal base functions would no longer be eikx, but some other functions
adapted to the horizontal boundary conditions, and also characterized by a typical
wavenumber similar to k. The periodic boundary conditions are the most convenient
for taking into account the finite horizontal size of a physical system.

Finally, we note that if the size of the system grows, the number of modes in the
unstable spatial frequency band also grows. Thus, for a given Rayleigh number, the
number of unstable modes grows with the size of the system (see Fig. 7.7).

7.7.2 Small Amplitudes

Solving the nonlinear equations is usually feasible only numerically. However, much
can be learnt from the weakly nonlinear case which is accessible to analytic work.
Here, we shall focus on this latter case and introduce two restrictions:
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a

k

Ra
b

k

Ra

Fig. 7.7 (a) The case of a small-size system: for the imposed Rayleigh number, a single mode is
unstable. (b) The case of a system of larger size. For the same imposed Rayleigh number now nine
modes are unstable

• The Rayleigh number is slightly supercritical Ra D .1C "/Rac
• The amplitudes of the perturbations are small and O."0/.

At first, the small parameters " and "0 seem to be independent, but we shall see
below that the consistency of the solutions imposes a relation between them.

Recalling the results of the linear analysis (7.42), we find that the two eigenvalues
have now the following form:

�C D "
`2P
P C 1

C O."2/ (7.58)

�� D �`2.P C 1/C O."/ (7.59)

Thus, near the threshold, the growth rate of the instability is proportional to Ra �
Rac , or

�C D `2P
P C 1

Ra � Rac
Rac

The first approximation implies that the instability grows on an O."�1/ time scale,
which is large compared to unity.

Let us write the instable mode as follows:

�
 .x; z; t/ D  11.t/ sin�z sin kx
�.x; z; t/ D �11.t/ sin�z cos kx

(7.60)

We shall denote it also .�11;  11/. k D kc D 2�=L is its wavenumber. We aim at
obtaining the differential equations verified by the amplitudes  11.t/ and �11.t/.
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Let us start by computing the nonlinear terms with (7.60). We find

J Œ�;  � D J Œ�11.t/ sin�z cos kx;  11.t/ sin�z sin kx�D� 11.t/�11.t/k�=2 sin 2�z

J Œ ;� � D J Œ 11.t/ sin�z sin kx; �. 11.t/ sin�z sin kx/�D0

We see that the first nonlinear role played by ( 11.t/; �11.t/) is to excite the
harmonic characterized by .kx D 0; kz D 2�/, or, in our notations . 02; �02/. Using
(7.31), we find that the evolution of this harmonic is governed by:

8̂
ˆ̂<
ˆ̂̂:

d 02

d�
C4�2P 02D0

d�02

d�
C4�2�02D�.k�=2/ 11�11

(7.61)

We should notice here that  02 is always damped very quickly and it would just be
the same for �02 if the nonlinear forcing were absent. If the forcing term evolves
on a time scale large compared to unity, the derivative d�02=d� is always small
compared to 4�2�02; thus we may write

�02 D � k

8�
 11�11 (7.62)

In this case the mode . 02; �02/ is said to be a slaved mode. It closely follows the
evolution imposed by the mode . 11; �11/ as long as this evolution is slow. We thus
understand the reason why we chose a slightly supercritical Rayleigh number: the
growth of the unstable mode last on a long time scale compared to unity. Finally, we
also observe that �02 is O."02/. Moreover, since  02 is rapidly damped, we can set it
to zero hereafter.

We may seek for other nonlinear effects. The most important comes from the
interaction between . 11; �11/ and (0,�02). This interaction modifies the evolution
of �11. Indeed,

J Œ �02 sin 2�z;  11 sin�z sin kx � D ��k�02 11.sin 3�z � sin�z/ cos kx (7.63)

thus

d�11

d�
� k 11 C .�2 C k2/�11 D �k�02 11

Moreover, (7.63) shows that the mode (�13;  13/ is excited as well, and thus interact
with other modes, etc. Hence, we see that a whole chain of mode is excited.
However, this chain can be truncated thanks to the small amplitude hypothesis. At
this stage of the analysis, it is necessary to evaluate the order of magnitude of each
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term. Each nonlinear interaction increases the order of the term, and if we keep only
terms up to the third order in "0, three equations are necessary:

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

d 11

d�
� PRak=`2�11 C P`2 11 D 0

d�11

d�
� k 11 C `2�11 D �k�02 11

d�02

d�
C 4�2�02 D �k�=2 11�11

(7.64)

7.7.3 Derivation of the Amplitude Equation

The three equations (7.64) are those which control the dynamics of the system just
above the threshold of instability. They contain three modes: two are stable and one
is unstable. The following manipulations aim at isolating the amplitude equation
controlling the amplitude A.�/ of the unstable mode. The two other modes are
slaved to the unstable one.

We first insert the solution (7.62) into the second equation of (7.64). The system
changes into

8̂̂
<̂
ˆ̂̂:

d 11

d�
� PRak=`2�11 C P`2 11 D 0

d�11

d�
� k 11 C `2�11 D �k2�11 211=8

(7.65)

We now write this new system in a compact form like:

dX
d�

D ŒL�X C N (7.66)

where

X D
�
 11
�11

�
; ŒL� D

��P`2 PRak=`2

k �`2
�
; N D �k

2

8

�
0

�11 
2
11

�

For the moment, we leave aside the nonlinear terms N. The solution of the remaining
linear system may be written as

�
 11
�11

�
D
�
1

qC

�
Ae�C

� C
�
1

q�

�
Be��

� (7.67)
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where

�
1

q�

�
and

�
1

qC

�
are two eigenvectors associated with the eigenvalues ��

and �C of the matrix ŒL�. Setting A.�/ D Ae�C
� and B.�/ D Be��

� , (7.67) looks
like

�
 11
�11

�
D
�
1 1

qC q�

��
A.�/

B.�/

�
; (7.68)

where

qC D k

�C C `2
D k

`2
C O."/; q� D k

�� C `2
D � k

P`2 C O."/

Equation (7.68) is just a change of the projection base. Let

ŒM � D
�
1 1

qC q�

�
” ŒM ��1 D 1

qC � q�

��q� 1

qC �1
�

If we set A D
�
A

B

�
, (7.66) has the following shape

ŒM �
dA
d�

D ŒL�ŒM �A C N

Multiplying by the inverse of ŒM �, we transform ŒL� into its diagonal form. Hence,
we get

d

d�

�
A

B

�
D
�
�C 0

0 ��

��
A

B

�
� k2

8
ŒM ��1

�
0

�11 
2
11

�

which may be rewritten more explicitly as

8̂
ˆ̂̂<
ˆ̂̂̂:

dA

d�
D �CA� P`2k

8.P C 1/
.AC B/2.qCAC q�B/

dB

d�
D ��B C P`2k

8.P C 1/
.AC B/2.qCAC q�B/

(7.69)

To solve this system, some remarks are in order. First, we have assumed a slightly
supercritical Rayleigh number so that �C is O."/ and �� is O.1/. If B were alone,
it would be damped very quickly, but the slow growth of A let B “survive”. Now,
since A evolves slowly we may assume (and check later) that B does so. B changes
on the same time scale as A, therefore dB

d�
is negligible compared to ��B . Just as
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�02 above, B is a slave mode. We are now left with a polynomial equation of cubic
order in B , still difficult to solve. However, if we assume that the amplitude of B is
very small compared to that of A, the solution is straightforward:

B D Pk2
8.P C 1/2`2

A3 D O."03/

Such a solution is consistent with our hypothesis B  A, which turns out to be the
right one.5 Finally, A(�) verifies the differential equation

dA

d�
D �CA� LA3 : (7.70)

This is Landau equation that we introduced in Chap. 6. The Landau constant can be
computed explicitely, namely

L D Pk2
8.1C P/ > 0

It is positive, showing that the bifurcation is supercritical. The diagram of this
bifurcation is given in Fig. 7.8.

Let us now come back to the relation between " and "0. For consistency, each term
in (7.70) needs to be of the same order of magnitude (otherwise one of them could

Fig. 7.8 The bifurcation
diagram

Ra

A=0 Rac

A∝
√ Ra − Rac

Aeq

•

5Other solutions may exist where B is not small compared to A, but they are uninteresting for us
as we are focusing on the case where A grows first and B follows.
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be suppressed); recalling that A is O."0/ and that it evolves on a time scale O.1="/,
dA
d�

and �CA are both O.""0/ whereas LA3 is O."03/. Hence, in order that all terms
be of the same order (in the "; "0 expansion), it is necessary that "0 D O.p"/. This
relation enlights the link between the smallness of the growth rate and that of the
amplitude.

Using the asymptotic amplitude, we have

Aeq D p
24" (7.71)

From which we derive the amplitude of the slave mode �02

�02.z/ D � "

�
sin 2�z

This mode gives the modification of the temperature profile when thermal convec-
tion sets in. This new profile has a steeper gradient near the boundaries and a weaker
one in the middle of the layer. As shown in Fig. 7.9, thermal layers appear near the
walls. We now understand the mechanism by which the instability saturates. On the
one hand the flow reduces the temperature gradient in the central part of the layer,
thus locally lowering the Rayleigh number, on the other hand, a stronger gradient
near the wall arises but it is not destabilizing since it applies to a thinner layer (recall
that Ra varies like d3).

Fig. 7.9 The temperature
profile above the threshold;
the amplitude " D 0:5 has
been strongly exaggerated so
as to clearly show the three
layers appearing in the
convecting fluid. The I and III
zones show the thermal
“boundary layers” while the
middle layer II is a region
with a quasi-adiabatic profile
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7.7.4 Heat Transport: The Nusselt Number

We can now compute the heat flux between the two plates and compare it to the
situation where the fluid is at rest. The ratio of these two fluxes is called the Nusselt
number. Following this definition, we write

Nu D Heat flux with convection

Heat flux without convection
” Nu D

Z
.S/

.�cpT v � �rT / � dS
Z
.S/

.��rTeq/ � dS

Let us compute this number when the Rayleigh number is slightly supercritical.
Since Teq is solely a function of z, the Nusselt number depends only on horizontal
means which we define as:

hf i D

Z
.S/

f dS
Z
.S/

dS

Using dimensionless quantities and noting that dz�eq D �1, then

Nu D ˝
.� C �eq/uz � @z.� C �eq/

˛
(7.72)

so that

Nu D 1C h�uzi � @z�02

but

h�uzi D kc�11 11.1 � cos 2�z/=4 D k2cA
2

4`2
.1 � cos 2�z/

Finally,

Nu D 1C 2" (7.73)

Showing that, near the threshold of instability, the Nusselt number increases linearly
with " or equivalently with the difference Ra � Rac .
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7.8 Fixed Flux Convection �

7.8.1 Introduction

In all the foregoing matter, we considered that the plates limiting the fluid are
perfect heat conductors, so that their temperature remained constant (fixed by a
thermostat). Hence, we demanded that the temperature fluctuations vanished on the
boundaries.

In the case of a laboratory experiment the boundary conditions are not so
simple. As mentioned in Sect. 1.8.2 the only conditions that have to be satisfied
are

�f
dTf
dz

D �s
dTs
dz
; Tf D Ts

where the index f refers to the fluid and the index s to the solid. However, the
temperature field in the solid is not known and needs to be computed as well. The
general case is thus quite tedious and we refer the reader to the work of Hurle et al.
(1966) for a detailed study.

Here, we shall concentrate on the limit �s=�f ! 0 which is the case where the
solid is a very poor heat conductor compared to the fluid. This case corresponds to
the ideal insulator. Hence, after studying the ideal conductor case, we now explore
the other extreme. From a physical point of view, it means that the temperature
field in the solid is fixed (or evolve on a very long time scale compared to that of
the fluid). Thus, the temperature gradient, and therefore the energy flux, is fixed in
the solid and the temperature fluctuations at the interface do not propagate inside
the solid. Hence, one imposes that the temperature gradient does not fluctuate,
or that

@�

@z
D 0 (7.74)

on z D 0; 1. We note that in such conditions the Nusselt number remains fixed to
unity.

The interesting point of this system is that the convective instability occurs
with a vanishing critical wavenumber. Hurle et al. (1966) indeed noticed that as
�s=�f ! 0 then kc ! 0. Convection sets in at a scale all the larger that the
solid is less conductive. It is then possible to find out a weakly nonlinear solution
taking advantage of the fact that the horizontal scale is very large compared to
the height. The resolution of this problem is a typical example of a multi-scale
analysis.
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7.8.2 Formulation

We start again from the equation of motion (7.31) and introduce the small parameter
" such that:

 D "�; @x D "@X ; @t D "4@� ; Ra D Rac C 
2"2

where
measures the rate of supercriticality. Thus doing, we rescaled the horizontal
lengths, introducing the scaled variableX D "x of order unity. We also rescaled the
time and introduced the new time variable � D "4t . Hence, we can focus on very
large horizontal scales and very long time scales. The choice of the "4 factor in
the time scale is justified a posteriori by the consistency of the solutions. The two
equations of (7.31) now read:

"6@�@
2
X� C "4

�
@�D

2� C @X�@
2
XD� � @3X�D�

�C "2
�
@X�D

3� � @xD
2�D�

� D
P �.Rac C 
2"2/@X� CD4� C 2"2@2XD

2� C "4@4X�
	

"4@� � C "2 .@X�D� � @x�D�/ D "2@X� C .D2 C "2@2X/�

Here, the functions depends on the three variables .�; X; z/. The boundary condi-
tions at z D ˙ 1

2
are6

D� D 0

for the temperature and

uz D "2@X� D 0 and �xz D 0 ” D2� D 0

for the velocity. Note that we chose the stress-free boundary conditions; for no-slip
conditions we would ask ux D 0 or D� D 0.

7.8.3 The Chapman–Proctor Equation

We now develop the solution in powers of the small parameter up to the fourth order,

� D �0 C "2�2 C "4�4 C � � � ; � D �0 C "2�2 C "4�4 C � � �

6We place the boundaries at z D ˙ 1
2

rather than at z D 0; 1 so as to be able to use the symmetry
or the anti-symmetry of the functions with respect to the z D 0 plane.
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Note that with the choice made on the amplitudes and the horizontal scales, the
velocity field is O."/, or

u D �@ 
@z

ex C @ 

@x
ez D �"D�ex C "2@X�ez

whereas the temperature field remains O.1/.
At zeroth order, the equations of motion reduce to

D2�0 D 0 and Rac@X�0 CD4�0 D 0

which lead to the following type of solution

�0 D f .X; �/ and �0 D RacP.z/f 0.X; �/

where D4P.z/ D �1. f .X; �/ is an unknown function which needs to be
determined; f 0.X; �/ is its derivative with respect to X . We note that the boundary
conditions on �0 are automatically satisfied whereas those on the velocity demand
that P.˙ 1

2
/ D 0 and P 0.˙ 1

2
/ D 0 for no-slip conditions or P 00.˙ 1

2
/ D 0 for stress-

free ones. These last two conditions and the differential equation allow us to specify
completely the function P.z/. In the no-slip case

P.z/ D � 1

24
z4 C z2

48
� 1

384
D � 1

24

�
z2 � 1

4

�2

while in the stress-free one

P.z/ D � 1

24
z4 C z2

16
� 5

384
:

Let us now consider the "2-order of the temperature equation. We have

D2�2 D �RacDPf 02 � .RacP C 1/f 00 (7.75)

This equation is interesting as it has a solution only if the right-hand side verifies
a solvability condition. Indeed, if we integrate the equation on z, then the left-hand
side is zero whereas the right-hand side implies:

Rac D �
 Z C1=2

�1=2
P.z/dz

!�1

giving the value of the critical Rayleigh number. This expression leads to the
numerical values Rac=720 in the no-slip case and Rac=120 in the free-slip one,
values which were first derived by Hurle et al. (1966).
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The equation (7.75) can now be solved. We find

�2 D f2.X; �/CW.z/f 02 CQ.z/f 00

where we introducedW.z/ andQ.z/ such that

W 00 C RacP 0 D 0 and Q00 C RacP C 1 D 0

These new functions verify the boundary conditionsQ0.˙ 1
2
/ D W 0.˙ 1

2
/ D 0 since

D� D 0 on the boundaries. We infer that W 0 D �RacP .
The "2-order of the momentum equation leads to

D4�2 D � 
2f 0 � Rac
�
f 0
2 CW.f 02/0 C .Q C 2P 00/f 000	

C Ra2c
P

�
PP000 � P 0P 00	 f 0f 00

which is solved in the same way as the equation for �2; we find

�2 D 
2Pf 0 C RacPf 0
2 C Uf 000 C Sf 0f 00

with

D4U D �Rac.QC 2P 00/ and D4S D �2RacW C Ra2c
P

�
PP000 � P 0P 00�

The boundary condition uz D 0 imposes that

U.˙1=2/ D S.˙1=2/ D 0

The last step consists in writing the fourth order "4-term of the temperature equation.
Integrating this equation on z between ˙ 1

2
, we obtain

@�f C A
2f 00 C Bf .4/ C C
�
f 03�0 CD

�
f 0f 00�0 D 0 (7.76)

which is the Chapman–Proctor equation. It controls the horizontal dynamics
of small-amplitude convection at fixed flux (Chapman and Proctor 1980). The
constants A;B;C;D are given by

A D 1

Rac
; B D �

Z 1=2

�1=2
.U CQ/dz;

C D �Ra2c

Z 1=2

�1=2
P 2dz; D D

Z 1=2

�1=2
.RacPQ0 � S � 2W /dz
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The evaluation of the foregoing integrals is not straightforward. Let us illustrate
their derivation in the case of stress-free conditions on both boundaries. Because of
the symmetry of the set-up D D 0. The calculation of B is a little tedious. We first
remark that

�
Z 1=2

�1=2
U dz D

Z 1=2

�1=2
UD4P dz D

Z 1=2

�1=2
PD4U dz

Then, the differential equation verified by U implies that

B D
Z 1=2

�1=2
�
2Rac.DP/2 � .DQ/2

�
dz

Noting that

DQ D z5 � 5

2
z3 C 9

16
z

we finally obtain

B D 1091

5544
' 0:197

In the same way, one can derive that

C D �155
126

7.8.4 Properties of the Small-Amplitude Convection

Chapman–Proctor’s equation gives a good description of the dynamics when the
temperature gradient is slightly supercritical.

To start with, let us examine the linear case and search for a solution proportional
to e�t ; if 
 D 0 (i.e. Ra = Rac), then the growth rate of a disturbance is just
�Bk4 and the critical wavenumber is k D 0 as expected. If the Rayleigh number
is now slightly supercritical, we may linearize (7.76) and find the dispersion
relation

� D k2A
2 � Bk4 (7.77)

which shows that the wavenumber of the fastest growing mode is

km D 
p
2BRac

(7.78)
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This results shows that the fastest growing mode is not necessarily the one with the
critical wavenumber. In the present case, the mode with the critical wavenumber
(k D 0) has a zero growth rate!

We should also note that the transition from the hydrostatic state to the convective
one is independent of the Prandtl number. The growth rate is real so that convection
is steady (no oscillation).

Let us now examine the nonlinear régime. If the boundary conditions are identical
on the top and bottom plates, the solution is symmetric with respect to the mid-layer
z D 0 plane. The integrand defining D is antisymmetric and thus D should be zero
in this case. The Chapman–Proctor equation therefore simplifies in this case and
may be written

@�g C A
2g00 C Bg.4/ C C
�
g3
�00 D 0

where we took the derivative of the equation and set g D f 0. Now, introducing the

new variable u D
q

C
A

g



and changing the time scale as well as theX -scale, we find

the Cahn–Hilliard equation:

ut D �u00 � Bu.4/ C �
u3
�00

(7.79)

where B D BC1=2=A5=2
5. This equation was uncovered by John Cahn and
John Hilliard in 1958 when they studied the dynamics of the phase separation
phenomena.7

We note that this equation, as the Chapman–Proctor one, is richer than Landau
equation which allowed us to study the nonlinear evolution of disturbances leading
to convection rolls. The Landau equation indeed controls the time evolution of the
amplitude of perturbations (whose structure is fixed by the linear analysis), while
the two foregoing equations control both the time evolution and the spatial structure
of the solutions (being partial differential equations). They are much simpler than
the original ones, but still contain a rich variety of solutions. For instance, one can
solve the Cahn–Hilliard equation in a stationary case (the solution is expressed with
elliptic integrals) and then study the stability of these nonlinear solutions. Chapman
and Proctor have shown that, in a periodic box, the stable flow is made of very
flattened contra-rotating rolls.

7Cahn and Hilliard (1958).
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7.9 The Route to Turbulent Convection

7.9.1 The Lorenz Model

System (7.64) has been derived using the hypothesis of a slightly supercritical
Rayleigh number. However, if we “forget” this restriction, we have at our disposal a
set of three nonlinear equations which control a very rich variety of solutions, actu-
ally. They may give us interesting informations on the development of convection
when we increase the Rayleigh number, if the modes that are dynamically active
remain limited to these three ones.

In order to show the parameters which control this system, it is useful to make
the following change of variables:

8̂̂
ˆ̂<
ˆ̂̂̂:

 11 D `2
p
2

�k
X; �11 D `6

p
2

�k2Ra
Y

�02 D � `6

�k2Ra
Z; � D t=`2

(7.80)

We thus find the equation of the Lorenz system:

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

dX

dt
D P.Y �X/

dY

dt
D rX � Y � XZ

dZ

dt
D �bZ C XY

(7.81)

where we set

r D Ra

Rac
and b D

�
2�

`

�2
(7.82)

since Rac D `6=k2. Three parameters control the Lorenz system: the Prandtl
number P , the reduced Rayleigh number r and b which measures the aspect ratio
of the convection cells (the ratio between their height and their width).

As the Landau equation, this system has one or three fixed points (points of
“equilibrium”), namely

X D Y D Z D 0 if r < 1
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a b c

Fig. 7.10 Three representations of the time evolution of the Lorenz system in a chaotic régime: (a)
X(t) shows the evolution of the X variable, especially the growth of the amplitude due to the Hopf
bifurcation and the start of the chaotic régime. (b, c) give for the same time interval, the evolution
of the system in the phase space showing evidence of a strange attractor

or

X D Y D Z D 0

or
X D Y D ˙pb.r � 1/ and Z D r � 1

if r � 1

The first fixed point (X D Y D Z D 0) turns unstable when the critical value
r D 1 is overpassed. The new fixed point is linearly stable in the interval Œ1; rcŒ
with rc D 24:74. At r D rc there is a subcritical Hopf bifurcation and the system
evolves towards a chaotic state where one finds the famous Lorenz attractor. This
situation is illustrated in Fig. 7.10 where we clearly see the exponential growth
and the beginning of a chaotic sequence. The subcritical nature of the bifurcation
indicates that one may find a chaotic state8 when r < rc . A study of the stability of
the branch X D Y D ˙pb.r � 1/ shows that the chaotic state disappears when
r < 13:926 (if b D 8=3 and P D 10).

7.9.2 The Domain of Very Large Rayleigh Numbers

In nature thermal convection usually appears with very large Rayleigh numbers
because of the large size of the systems. For instance, at the Sun’s surface, the
convective cells (see Fig. 7.11) are controlled by a Rayleigh number larger than
1020. Hence, many studies have explored the properties of thermal convection when
Ra � Rac .

8This is a metastable chaos.
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Fig. 7.11 Convection at the
Sun’s surface: the rising gas is
hot and appears brighter than
the cold downflowing gas.
The temperature difference
between the hot and “cold”
gas is about 200 K around an
average of 5,800 K. This
gives the granular aspect to
the surface. Solar convection
cells are thus called granules.
Their size is about 1,000 km
and their lifetime less than
10 min (Credit T. Roudier,
Lunette Jean Rösch -
Observatoire Midi-Pyrénées)

When one progressively increases the Rayleigh number, for instance by increas-
ing the temperature difference, the foregoing solutions are destabilized and after a
few bifurcations a chaotic régime may set in. If the temperature difference is still
increased, convection reaches a turbulent régime: a continuous spectrum of spatial
and temporal scales appears.

Although the turbulent régime is very complicated (see Chap. 9), we may expect
that some simple laws govern the mean quantities. For instance, the heat flux is
a typical quantity of interest when one deals with turbulent convection. We may
wonder whether there exists any asymptotic law governing this quantity when
Ra ! 1. This question is still open, but some simple models may give us a first
description of this asymptotic state. One of them (see Fig. 7.12) considers that the
essential part of the temperature drop across the layer occurs in thin boundary layers
attached to the bounding plates.

The thickness ı of the boundary layers is such that these layers are stable with
respect to the convection, thus

ı3˛g�T

�

 Rac

but, by definition Ra D d3˛g�T

�
so

ı

d


�

Rac
Ra

�1=3
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Fig. 7.12 Schematic view of
turbulent convection between
two plates

T

Z

Boundary layer

Quasi−isothermal
turbulent region

The Nusselt number is proportional to the ratio of the total flux with convection
and the flux without convection. We use this number to measure the heat flux. We
note that the flux without convection is proportional to �T=d whereas the flux
with convection is proportional to �T=ı. Indeed, the boundary layers carry by
conduction the whole heat flux. We thus write

Nu / d

ı
	
�

Ra

Rac

�1=3

which shows that the Nusselt number grows like the one-third power of the Rayleigh
number.

Many experiments have attempted to find out the actual scaling law and
eventually confirm the foregoing approach. For instance, Niemela et al. (2000)
explored the relation between Nu and Ra using helium. While varying Ra between
106 and 1017, they found that

Nu ' 0:124Ra0:31

in this range of Rayleigh numbers (see Fig. 7.13). But more recently Ahlers et al.
(2012) using another gas (sulfur hexafluoride) found this law solely when Ra <	 1013,
suggesting that beyond this value variations of the Prandtl number (see Fig. 7.13)
influence the scaling law.
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Fig. 7.13 Nusselt number
versus Rayleigh number in
the experiment of Niemela
et al. (2000)

7.10 Exercises

1. a) Using the differential form of the enthalpy, show that for an ideal gas in
equilibrium in a gravity field g,

rT � .rT /ad D T

cp
rs

b) Derive (7.9).
2. From the values of the temperature gradient in the stratosphere what can we

say about the convective stability of this layer? Use the values of the standard
atmosphere given in table 2.1.

3. In the case of convection between two vertical plates described in Sect. 7.4.1,
compute the Reynolds number of this flow. Give the numerical values, taking
Tc � Tf D 20 K, d = 1 cm, .Tc C Tf /=2 D 283 K, � D 10�5 m2/s (case of air)
and g = 9.8 m/s2. What do you conclude?

4. Compute the maximum Reynolds number of thermal convection near the thresh-
old when using stress-free boundary conditions.

5. For the Lorenz system, show that the solution X D Y D Z D 0 is unstable
when r > 1.

6. Here is a practical exercise: In a pan with, preferably, a white bottom, dispose a
thin layer of oil (sunflower for instance) of 2 or 3 mm thick. Add a small amount
of cocoa powder (less than half a tea spoon), an mix vigorously so as to obtain
an homogeneous mixture. Put the pan on a cold electric heater and wait for the
fluid be at complete rest. Then turn on the heater at minimum power, after a few
minutes, a network of (nearly) hexagonal cells appear.
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Further Reading

For all the questions around the problems of linear convective instability in various
configuration (with rotation, magnetic field or in spherical geometry), one should
consult Hydrodynamic and hydromagnetic stability by S. Chandrasekhar. To a lesser
extent, this problem is also discussed in Hydrodynamic stability by Drazin and Reid
(1981). More about the Lorenz attractor may be found in Order within chaos by
Bergé et al. (1984). Another side of thermal convection not discussed in this book,
namely heat transfer associated with fluid flows, may be found in Convection Heat
Transfer by Bejan (1995).
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Chapter 8
Rotating Fluids

8.1 Introduction

The most spectacular effect of rotation on a fluid flow is certainly the huge
hurricanes surging up in the Earth’s atmosphere when the waters of the ocean are
warm enough. These huge flows, so typical in pictures of the Earth, would not exist
if the Earth were not rotating. They owe their existence to the Coriolis acceleration.

In this chapter we wish to introduce the reader to the fundamentals of fluid
dynamics in a rotating frame. Rotating fluids are indeed those fluids whose motion
is essentially a solid body rotation supplemented by a small velocity field. Thus,
even if hurricanes generate terrific winds, let say with speeds of 60 m/s, this is still
small compared to the Earth rotation velocity (460 m/s). Such a velocity field is thus
conveniently analysed in a rotating frame. As we shall see, all the novelties come
from the Coriolis force, which deeply modifies the dynamics, imposing the quasi-
bidimensionality of steady flows, generating new sorts of waves, new boundary
layers, etc.

8.1.1 The Equation of Motion

The basic change in the equations governing a fluid flow in a rotating frame comes
from the existence of inertial forces associated with the Coriolis and centrifugal
accelerations. Thus, the equation of momentum is the only one to be modified. Its
expression is easily derived from Newton equation, which controls the motion of a
point mass particle. Let r be the position of the particle; it evolves according to

�
d2r

dt2
D f
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in a galilean frame. When the frame rotates at an angular velocity � the same
equation reads

�

�
d2r

dt2
C 2� � dr

dt
C � � .� � r/

�
D f

This equation also gives the trajectory of a fluid particle according to the Lagrangian
approach. Going back to the eulerian formalism, the preceding equation is trans-
lated into

�

�
Dv
Dt

C 2� � v C � � .� � r/
�

D f (8.1)

which gives the evolution of the velocity field. This expression could have been
derived directly from the one we met in the first chapter; however, this derivation is
lengthy and left to the reader as an exercise.

8.1.2 New Numbers

The importance of rotation may be appreciated if we use the right non-dimensional
numbers. For this, we first introduce a length scale L, a velocity scale V and a
time scale that we relate to rotation. This time scale is .2˝/�1. 2˝ is known as
the Coriolis frequency. In order to concentrate on the effects of rotation, we shall
consider a simple fluid like the incompressible viscous fluid.

The momentum and continuity equation read:

�

�
Dv
Dt

C 2� � v C � � .� � r/
�

D �rP C 
�v (8.2)

r � v D 0 (8.3)

where we left aside an eventual gravity force. If we observe that

� � .� � r/ D �r Œ1
2
.� � r/2�

namely, the fact that the centrifugal acceleration may be derived from a potential,
then, we can rewrite the momentum equation as:

Dv
Dt

C 2� � v D �r˘ C ��v (8.4)
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where ˘ D P=� � 1
2
.� � r/2 is called the reduced pressure. We are now in a

position to use non-dimensional quantities and we find:

@u
@�

C ez � u C Ro u �ru D �rp C E�u (8.5)

where we set � D ˝ez and p D ˘=.2˝LV/. Two numbers appeared:

E D �

2˝L2
and Ro D V

2˝L
(8.6)

which are respectively the Ekman number and the Rossby number. We note that the
Ekman number measures the ratio of the viscous force to the Coriolis one, while the
Rossby number shows the importance of the nonlinear advection terms with respect
to the Coriolis acceleration.

When a fluid flow, in some inertial frame, is essentially a solid body rotation, we
should write V D ��rCv where jjvjj  jj��rjj. Since jjvjj is just the magnitude
of the flow in the rotating frame, we see that flows dominated by rotation are such
that their Rossby number is very small compared to unity.

We may observe that the Rossby and Ekman numbers decrease when the scale
of the flow increases. Rotation is therefore expected to be important in the large
scales. Let us consider two examples: a wind of 20 m/s in the Earth atmosphere is
dominated by the Earth rotation when it affects a scale larger than 140 km. For these
scales, the Rossby number is less than unity. An ocean current, like the Gulf Stream,
is even more affected by rotation since its speed is much lower, typically 1 m/s. For
this value, rotation is important for all scales larger than 7 km. This shows that an
oceanic current, spanning thousands of kilometers, is very much dominated by the
effects of rotation.

Now, if we turn to the Ekman number, it is usually extremely small. For instance,
a water flow with a scale of 7 km, has an Ekman number around 10�10. This implies,
as we shall see, the existence of very thin boundary layers.

8.2 The Geostrophic Flow

8.2.1 Definition

The geostrophic flow is a steady flow where the viscous force and the nonlinear
terms play a negligible part. The momentum equation is therefore reduced to

�2� � v D �rP (8.7)

This is called the geostrophic balance. The pressure gradient balances the Coriolis
force.
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8.2.2 The Taylor–Proudman Theorem

The geostrophic flow has one remarkable property: it is independent of the
coordinate parallel to the rotation axis. Indeed, let us take the curl of (8.7); we find

r � .2� � v/ D 0 ” .� � r/v D 0 ” @v
@z

D 0 (8.8)

where we used (12.41). The velocity field therefore only depends on the coordinates
in the plane orthogonal to �. This result is known as Taylor–Proudman Theorem.

8.2.3 The Expression of the Geostrophic Flow

The geostrophic (8.7) can easily be solved. One finds:

v D 1

2˝�
ez � rP C F.x; y/ez (8.9)

In this expression F.x; y/ is an arbitrary function to be determined with the
boundary conditions. This solution shows that the pressure also depends solely on
the plane coordinates. The pressure plays the role of a stream function since isobars
are also streamlines.

To further illustrate the properties of geostrophic flows, let us consider the case
where the rotating fluid is bounded by a surface defined by:

�
z � f .x; y/ D 0 if z � 0

z C g.x; y/ D 0 if z � 0
(8.10)

The outgoing (unnormalized) normal vector is

�
n D nsup D r.z � f .x; y// D ez � rf
n D ninf D �r.z C g.x; y// D �ez � rg (8.11)

from which we derive the equality:

nsup � ninf C r.f � g/ D 2ez

However, on the bounding surface nsup � v D 0 or ninf � v D 0, but since v does not
depend on z, the foregoing equality may be used everywhere. Thus, taking the scalar
product with v, we find

2vz D 2F.x; y/ D v � r .f � g/
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which we report in (8.9). This yields

v D 1

4˝�

�
nsup � ninf C r .f � g/

	 � rP C 1

2
v � r.f � g/ez

This new expression may be simplified if we note that

v � r.f � g/ D .ez � rP/ � r.f � g/=.2˝�/I

since r .f � g/ � rP is parallel to ez. It turns out that

v D 1

4˝�
.nsup � ninf / � rP (8.12)

This expression may further be arranged as follows. If we take the scalar product of
(8.12) with ninf , we find

.nsup � ninf / � rP D 0

but nsup � ninf D r .f C g/ � ez C rf � rg, so that

.rh � ez/ � rP D 0 ” rP � rh D 0

We introduced h D f C g and observed that rf � rg and rh � rP are along
ez. One should note that h.x; y/ is just the height of the container at .x; y/. The
foregoing relation shows that the pressure only depends on h. Noting that nsup C
ninf D �rh, (8.12) may be rewritten in its final form:

v D 1

2˝�

�
dP

dh

�
ninf � nsup (8.13)

This solution is valid only if the normal vectors are continuous in the x; y-plane. It
may be observed that v is parallel to the curves of constant height since v � rh D 0

because ninf � nsup D ez � rh. These curves are also called geostrophic contours.
Since they are streamlines they must be closed.

Another property of the geostrophic flow is that it possesses circulation around
the rotation axis. Indeed, along a geostrophic contour

I
.C /

v � dl D 1

2˝�

�
dP

dh

�I
.C /

jjninf � nsupjjdl ¤ 0 (8.14)

Thus, in general, the geostrophic flow owns angular momentum.
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8.2.4 Examples

8.2.4.1 The Geostrophic Flow in a Sphere

To give a simple illustration of the foregoing results, we now take the case of a
geostrophic flow in a spherical container, which is typical of planetary or stellar
situations. In this case, geostrophic contours are just circles of constant latitude and
the velocity is constant on cylinders centered on the rotation axis.

Expliciting the results of the previous section, we note that for a sphere of radius
R, the equations of the boundary are such that

f D g D
p
R2 � x2 � y2

Letting s2 D x2 C y2, the direction of the velocity is

ninf � nsup D � 2sp
R2 � s2

e'

which confirms that the velocity is purely azimuthal. If we now observe that h D
2
p
R2 � s2, the solution (8.13) gives

v D 1

2˝�

@P

@s
e' (8.15)

This relation could have been derived directly from (8.7), of course.
Solution (8.13) is more interesting when one deals with a more complicated

geometry, like a spheroid for instance. One just needs to derive h and normal vectors
from the shape of the surface boundary.

Let us note that if the sphere is truncated, like in Fig. 8.1b, some geostrophic
contours are no longer closed. This ruins the existence of the geostrophic solution
which disappears. As shown by Greenspan (1969), no steady state is possible, and
the geostrophic flow is replaced by a set of Rossby waves, which form a subset of
inertial modes (see below for their detailed presentation).

8.2.4.2 The Vortex of an Emptying Reservoir

When a reservoir like a bath tube is emptied, a strong vortex is often observed above
the exit. The question of whether the rotation of this vortex is controlled by the
Coriolis force due to the Earth rotation is often raised. Should the vortex rotate
in opposite directions when one makes the experiment in the northern or southern
hemisphere?
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Fig. 8.1 (a) Geostrophic contours on a sphere. (b) A truncated sphere: some geostrophic contours
are not closed (like C0)

The answer is negative because the Coriolis force imposed by the Earth rotation
is much too weak to be effective compared to other forces. To make things clear,
it is useful to appreciate the orders of magnitude associated with such a flow. First,
we may observe that the scale at which the Rossby number passes below unity for
a flow whose typical velocity is 10 cm/s, is 700 m. Thus, unless the bath tube is of
the size of a lake, the Rossby number will be very large, letting the .v �r/v term a
thousand time greater than the Coriolis acceleration.

Another way of understanding this question is to suppose that the flow is
geostrophic (it is indeed almost steady, and viscous effects are small). In such a
case, the amplitude of the fluid velocity would be V 	 jrP j=2˝ . We may estimate
the pressure gradient by noting that on the bottom of the bath tube the pressure
varies between �gh C Patm and Patm, far from the exit and at the exit. Taking hD10
cm, we find a fluid velocity of 20,000 km/s which is absurd.

So what’s going on in reality? The key point is to be found in the initial
conditions. In general, the fluid is not strictly at rest when one empties a bath tube.
With respect to the exit, the water owns some residual angular momentum. When
the emptying is started, conservation of this momentum implies an amplification
of the rotation near the exit. Actually, the convergence of the streamlines on exit
strongly amplifies the vorticity. Thus, a flow which was not perceptible to the eye
before the reservoir is emptying, shows up neatly when the exit is open. The low
pressure at the vortex centre makes this structure clearly visible.
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8.3 Waves in Rotating Fluids

We continue our exploration of the properties of rotating fluids by focusing on the
waves that are specific to them.

8.3.1 Inertial Waves

Inertial waves owe their existence to the Coriolis force which is their restoring
force. We recall that the existence of the Coriolis force is the consequence of the
conservation of angular momentum. If this force were absent, the free motion in a
rotating frame would not conserve the angular momentum.

To fully appreciate its effects, it is useful to consider the motion of a particle
which is solely driven by this force. Its velocity verifies

dv
dt

C 2� � v D 0

This equation is easily solved and yields:

vx D v0 cos.2˝t/ and vy D v0 sin.2˝t/

if we choose that vx D v0 and vy D 0 at t D 0. A further integration gives the
trajectory:

x D x0 C v0
2˝

sin.2˝t/ and y D y0 � v0
2˝

cos.2˝t/

This shows that particles have a circular motion. The Coriolis force brings the
particles back to their initial position after making a circular trajectory with a radius
v0=2˝ .

Let us now focus on the dispersion relation of these waves. We take (8.5) and set
E = Ro = 0. As needed, we assume that the pressure and velocity perturbations are
plane waves, namely:

.p; v/ D .p; v/0ei.!t�k�x/

Incompressibility implies that

k � v D 0 (8.16)

which shows that these waves are transversal. The equation of momentum, i!v C
2˝ez � u D ikP , leads to
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8<
:
2˝ez � .u � k/ D ik2P
i!vz D ikzP

i!k � v D 2˝kzv
(8.17)

from which we derive the following dispersion relation:

!2 D .2˝/2
k2z

k2
(8.18)

This relation shows that the frequency of inertial waves is bounded by 2˝ , since
kz � k. Inertial waves are thus long period waves whose shortest period is half the
rotation period.

The dispersion relation also shows that these waves propagate in a very
anisotropic way. This is shown by the phase velocity:

v� D !

k
ek D 2˝

kz

k3
k (8.19)

This expression shows that no propagation is possible if it is restricted to a plane
perpendicular to the rotation axis rotation. Propagation preferentially occurs along
the rotation axis.

Now let us consider the group velocity. We find

vg D rk!.k/ D 2˝
k � .ez � k/

k3
(8.20)

This expression shows that vg � k D 0 : like for internal gravity waves, energy
propagates perpendicularly to the phase!

8.3.2 Inertial Modes

If the fluid domain is bounded, the equations of motion need to be completed by the
boundary conditions u � n D 0. The inertial modes are the oscillation modes of a
rotating inviscid fluid contained in a reservoir. Setting ! as the mode frequency, the
associated flow verifies

8<
:
i!u C ez � u D �rP
r � u D 0

u � n D 0 on S

(8.21)

which we wrote with non-dimensional variables following (8.5). Now, let !n and
!m be two distinct eigenfrequencies, then
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Z
.V /

un � u �
m dV D 0 (8.22)

i.e. inertial modes are orthogonal with respect to this scalar product. This property
is a consequence of (8.21) when it is written for two different modes of frequency
!n and !m. Indeed,

�
i!nun C ez � un D �rPn
�i!mu �

m C ez � u �
m D �rP �

m

(8.23)

Taking the scalar product of the first equation with the complex conjugate u �
m and

the second equation with un, adding the results and integrating over the whole fluid
volume leads to

i.!n � !m/
Z
.V /

un � u �
mdV C

Z
.V /

�
u �
m � .ez � un/C un � .ez � u �

m/
	

dV D 0

where we used the boundary conditions to eliminate the pressure term. The last two
terms are of opposite sign so that we are left with (8.22) since !m ¤ !n.

Another important property of inertial modes is that, like their wavy counterpart,
their frequency is less that 2˝ or, for the scaled !, less than unity. This result comes
from the momentum equation when projected on u � and integrated over the fluid’s
volume. It turns out that

! D

Z
.V /

ImŒ.u � � u/ � ez�dV
Z
.V /

juj2dV

Schwarz inequality, jImŒ.u � � u/ � ez�j � ju� � uj � juj2, leads to

j!j �

Z
.V /

jImŒ.u � � u/ � ez�jdV
Z
.V /

juj2dV
� 1 (8.24)

For some simple containers, the spectrum, namely all the possible values of !,
can be computed. In this case, the eigenvalues are dense in the interval [0,1]. This
means that for any real number in this interval, we may find a frequency ! as close
to this number as we wish (see the box “The inertial modes in the sphere” for a
detailed example).
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8.3.3 The Poincaré Equation

If we now take the divergence of (8.21), the system can be reduced to a single
equation on the pressure, namely

�P � 1

!2
@2P

@z2
D 0 (8.25)

This equation is known as Poincaré’s equation since the work of Élie Cartan (1922).
This equation is completed by the boundary condition u � n D 0, which can be
reexpressed with the pressure as:

� !2n � rP C .n � ez/.ez � rP/C i!.ez � n/ � rP D 0 (8.26)

The Poincaré equation completed with the foregoing boundary condition is
peculiar as it constitutes a mathematically ill-posed problem. Indeed, since ! < 1,
this equation is of hyperbolic type, like the wave equation. However, unlike the wave
equation, boundary conditions are imposed to the solutions of the Poincaré equation.
This makes an ill-posed problem in the sense of Hadamard. In the general case,
solutions own many singularities which endow inertial modes with very unusual
properties as illustrated in Fig. 8.2.

Fig. 8.2 A singular inertial mode: this figure shows the kinetic energy of an inertial mode inside a
spherical shell. This meridian cut shows that the mode is concentrated along a periodic path of the
characteristics of the Poincaré equation (this periodic path is called an attractor). When viscosity
decreases (here the Ekman number is 8� 10�10), the mode gets more focused around the attractor
and becomes singular at a vanishing viscosity (see Rieutord et al. 2001, for more details)
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The inertial modes in the sphere

Let us write the Poincaré equation (8.25) as

@2P

@x2
C @2P

@y2
�
�
1� !2

!2

�
@2P

@z2
D 0

(8.27)

The boundary condition v � n D 0 yields

s
@P

@s
C 1

i!

@P

@'
C
�
1� 1

!2

�
z
@P

@z
D 0

(8.28)

when cylindrical coordinates are used. It is
derived by using

n D 1p
r2 C z2

.rer C zez/

vs D � 1

1� !2

�
i!
@P

@s
C 1

s

@P

@'

�

(8.29)

vz D � 1

i!

@P

@z
(8.30)

The dispersion relation of inertial modes in a
full sphere has been first obtained by Bryan
(1889), who proposed to change the
z-coordinate into

z0 D � i!p
1� !2

z

so that Poincaré equation turns into Laplace’s
one. With this new system of coordinates, the
bounding sphere of radius R becomes:

x2 C y2

R2
� z02

B2
D 1 (8.31)

with B2 D !2

1�!2
R2. This is the equation of a

one sheet axisymmetric hyperboloid. To
solve Laplace equation, we need to use a
coordinate system which is appropriate to
this new geometry. These coordinates are
those of the oblate ellipsoid Angot
(1949,1972).
This coordinate system uses the following
surfaces:

x2 C y2

a2 cos2 �
� z02

a2 sin2 �
D 1

x2 C y2

a2 cosh2 �
C z02

a2 sinh2 �
D 1

where we identify

a2 D R2

1� !2
; sin2 � D !2

The ellipsoidal coordinates �; �; ' are related
to the cartesian ones by

8<
:
x D a cosh � cos� cos'
y D a cosh � cos� sin'
z0 D a sinh � sin�

(8.32)

and the solutions of the Laplace equation are
of the form:

P.�; �; '/ D X
l;m

Al;mP
m
l .sin�/

QPm
l .i sinh �/eim'

where the Pm
l are the Legendre polynomials.

Noting that

z D
p
1� !2

!
a i sinh � sin�

we can set 
 D i sinh � and � D a sin�; then
8̂̂
<
ˆ̂:
s D p

x2 C y2 D p
.a2 � �2/.1� 
2/

z D 
�p
a2 � 1

(8.33)

and a D 1=.1� !2/ if we set R D 1. The
solution is therefore:

PDX
l;m

Al;mP
m
l


 �
a

�
Pm
l .
/e

im'

” PDX
l;m

Al;mP
m
l .�

p
1� !2/Pm

l .
/e
im'
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The inertial modes in the sphere

The boundary conditions (8.28) need to be
rewritten with the variables (�; 
). We find

8̂
<
:̂

@


@s
D s


�
;

@


@z D .a2�1/.1�
2/z

�

@�

@s
D � s�

�
;

@�

@z D 
.�2�a2/
p

a2�1

�

(8.34)

with� D �2 � a2
2. Using these relations
on the sphere, at � D !

p

1�!2
, we finally

obtain the dispersion relation:

.1� !2/
dPml
d!

D mPml (8.35)

which permits the computation of the
frequencies of inertial modes in the sphere. If
we consider the case of axisymmetric modes,

m D 0, this relation is now simply
dPml
d!

D 0

or ! D ˙1. The eigenfrequencies are thus
the roots of the Legendre polynomial

P 1
l .!/ D p

1� !2
dP0l
d!

. All these roots are
between �1 and 1 (which meets the
constraint (8.24)) and when ` �! C1,
these root form a dense set in this interval.

8.3.4 Rossby Waves

Rossby waves constitute a wave category which is very important in planetary
atmospheres. They are often called planetary waves.1

Let us restart the derivation of the dispersion relation for inertial waves but
with the assumption that the fluid is contained in a very thin layer like the Earth
atmosphere. We set the z-axis along the vertical, the x-axis towards East (parallel to
the Earth rotation) and the y-axis to the North. We look for a purely two-dimensional
wave solution, where vertical motions are negligible compared to the horizontal
ones. The dispersion relation of such waves cannot be derived from the one of
inertial waves since we now impose the condition vz D 0. The simplification by
vz, which is needed to derive (8.18) is no longer possible. Thus, the derivation needs
to be started ab initio. The equations of the flow are:

�
i!v C 2�.y/ � v D �rP
r � v D 0

(8.36)

When writing this system, we explicitly mention the dependence � � �.y/ since
the local rotation vector depends on the latitude. We underline that since we restrict
the motions to the horizontal ones, the horizontal part of � does not play any role;
we just need to consider the component of � along the z-axis. We thus write:

i!v C 2˝.y/ez � v D �rP

1See Longuet-Higgins (1964).
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where˝.y/ D ˝ sin�.y/ , � being the latitude. We have

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

i!vx � 2˝.y/vy D �@P
@x

i!vy C 2˝.y/vx D �@P
@y

@vx
@x

C @vy
@y

D 0

(8.37)

Eliminating the pressure by taking the curl, we find the vertical component � of the
vorticity:

i!� D 2vy
d˝

dy
(8.38)

This equation shows that the relation between ˝ and the latitude is essential. Now
a standard approximation, called the ˇ-plane approximation, consists in setting d˝

dy

to a constant value. In atmospheric sciences, ˇ is called the gradient of the planetary
vorticity (2d˝=dy). With this assumption, we easily find the dispersion relation of
Rossby waves:

! D � 2kx

k2x C k2y

�
d˝

dy

�
(8.39)

This relation shows that !kx < 0 since d˝
dy > 0. Rossby waves thus propagate to the

x < 0, that is to say to the West, opposite to the Earth rotation. They are retrograde
waves. The group velocity

vg D 2
d˝

dy



.k2y � k2x/ex C 2kxkyey

�
=k4

shows that energy has no preferred direction.
The form of the dispersion relation of Rossby waves shows why we could not

have derived it from the one of inertial waves: the variation of ˝ is crucial. In
particular, we note that if the velocity field of the perturbation is a plane wave,
this is not the case for the pressure fluctuation because @P

@x
¤ ikxP . In fact,

Rossby waves are rather a class of inertial modes which meet some constraints like
bidimensionality. This is why, when a container does not admit closed geostrophic
contours, the geostrophic flow is replaced by an infinite sum of Rossby waves,
namely by inertial modes which are quasi 2D and of very low frequency.2

2A detailed discussion of this question may be found in Greenspan (1969).
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8.3.4.1 Planetary Modes

Let us now generalize the foregoing results by considering the Rossby waves over
the whole sphere. We still consider that they propagate in a very thin fluid layer
covering a sphere, but we abandon the ˇ-plane approximation. Such modes are
usually called planetary modes.

Because the velocity field is two-dimensional, we may use a stream function to
describe the flow. We thus introduce �.�; '/, which is such that

v D r � .�er /

We derive the equation for � by applying the er � r� operator to (8.21). We get

i!er � r � r � .�er /C er � r � .ez � u/ D 0

which leads to

i!��C @�

@'
D 0

on a sphere of unit radius. It is natural to decompose the stream function � on the
set of spherical harmonics, which is a complete base for the functions defined on
the sphere. Thus, setting

� D
X
`;m

�`mY
m
`

we find that an eigenmode is represented by a single spherical harmonic to which
corresponds the eigenfrequency

!`m D m

`.`C 1/
(8.40)

We derived this dispersion relation using the spherical harmonics differential
equation�Y m` D �`.`C 1/Y m` (see 12.31).

The expression of !`m shows that the (angular) phase velocity �!=m D
�1=`.` C 1/ is always negative.3 Thus, like Rossby waves, planetary modes
propagate to the West. Figure 8.3 illustrates the wind pattern generated by these
waves in the Earth atmosphere.

3We recall that we set � proportional to ei.!tCm'/.
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Fig. 8.3 Rossby waves in the Earth atmosphere: in shaping the interface between cold air and
warm air, Rossby waves have a determining influence on the weather at mid-latitudes. Credit: City
University of New York

8.4 The Effects of Viscosity

Until now we neglected the viscosity. We showed, while introducing the rotation
time scale, that viscous terms are controlled by the Ekman number, which value
is usually very small. Hence, the effects of viscosity are important only in places
where the gradient of velocity is strong, namely in boundary (or shear) layers.

As above, we shall consider the limit of vanishing Rossby numbers so as to
(again) neglect the nonlinear terms. Then, boundary layers usually result from a
balance between viscous terms and the Coriolis term. They are called Ekman layers.
The boundary layer flow can be formally solved, as we shall see below, because the
equations governing the flow are linear, unlike the general boundary layers that we
studied in Chap. 4 (like the Blasius flow for instance).

8.4.1 The Method

In order to simplify the discussion, we shall concentrate on the steady case only,
namely on the geostrophic flow (an example of the unsteady case can be found
in Rieutord 2001). The idea of the method is to divide the solution into small
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subsolutions which are easy to derive. For this, we first expand the solution into
powers of the small parameter

p
E, which is the thickness of the layer (just like

1=
p

Re in Chap. 4). We thus write

u D u0 C p
E u1 C E u2 C : : : ; p D p0 C p

Ep1 C : : : (8.41)

Then, each order un is split into two parts: the boundary layer part Qun and the interior
part un. The derivation of each of these terms is much simpler than the full solution.
Summing them together allows us to obtain a solution valid up to the chosen order
(usually one or two).

8.4.2 The Boundary Layer Solution

The boundary layer solution is simpler than the general one because the flow is
along the boundary and the velocity variations are dominated by the gradients along
the normal to the wall (see Chap. 4).

Let n be the outer normal of the wall, and let us rewrite (8.5) with Ro D @
@�

D 0.
We find

ez � u D �rp C E�u (8.42)

We now make the decomposition

u D u0 C Qu0; p D p0 C Qp0
There, u0 is nothing but the geostrophic solution. Qu0 and Qp0 are the corrections to add
to the geostrophic solution so that the boundary conditions are met. Since ez � u0 D
�rp0 then

ez � Qu0 D �r Qp0 C E�Qu0 (8.43)

where we neglected E�u0 since it is O.E/ while other terms are of order unity.
Let � be the coordinate along the normal of the wall directed towards the

container’s interior. Projected along n (8.43) yields

@ Qp0
@�

D n � .ez � Qu0/

Since Qp0 is a boundary layer quantity, its variation along � is very fast. If
p

E is the
thickness of the layer as shown below, then @ Qp0=@� is O.1=pE/ but n � .ez � Qu0/ is
O.1/. This implies that the normal derivative of Qp0 is zero. Hence, Qp0 is a constant
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across the boundary layer. We find here again the result derived from the Prandtl
equations, which control a general boundary layer (see 4.37b). Since the value of
Qp0 is zero outside the boundary layer, Qp0 is vanishing everywhere. The pressure

correction in the boundary layer is therefore of the next order, that is O.pE/. We
thus have to write

p D p0 C p
E .p1 C Qp1/

Keeping only the O.1/ terms in (8.43), we have

ez � Qu0 D @ Qp1
@�

n C @2 Qu0
@�2

(8.44)

where we introduced the stretched coordinate � such that � D p
E �. Taking the

cross product of this equation with n and observing that Qu0 � n D 0, we find that

� .n � ez/Qu0 D @2n � Qu0
@�2

(8.45)

On the other hand Qu0 D .Qu0 � n/n C .n � Qu0/� n D .n � Qu0/� n since we are dealing
with boundary layer quantities. (8.44) may be rewritten as

.n � ez/.n � Qu0/ � ez � .n � Qu0/n D @ Qp1
@�

n C @2 Qu0
@�2

H) .n � ez/.n � Qu0/ D @2 Qu0
@�2

(8.46)

where we identified the vectors belonging to the tangent plane. Multiplying (8.46)
by i and adding it to (8.45), we deduce that

@2

@�2
.n � Qu0 C i Qu0/ D i.n � ez/.n � Qu0 C i Qu0/ (8.47)

This equation is easily solved. We find

.n � Qu0 C i Qu0/ D .n � Qu0 C i Qu0/�D0 exp


��pi.n � ez/

�
(8.48)

The integration constant .n � Qu C i Qu/�D0 is given by the flow outside the boundary
layer. For instance, if the boundary conditions are u D 0 on the wall, then, the
solution must be such that Qu0 C u0 D 0 on the wall. Hence .n � Qu0 C i Qu0/�D0 D
�.n � u0 C iu0/wall, so that

.n � Qu0 C i Qu0/ D �.n � u0 C iu0/wall exp


��
p
i.n � ez/

�
(8.49)
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The solution (8.48) calls for some comments: First let us note that the velocity
has a changing orientation within the boundary layer. Indeed, let us assume, for
instance, that n D ez and u0 D U ex on the wall. Then, (8.48) changes into

� Qux D �Ue��0

cos � 0
Quy D Ue��0

sin � 0 (8.50)

where we set � 0 D �=
p
2. The “complete” solution reads

u D u0 C Qu0 D U


.1 � cos � 0e��0

/ex C sin � 0e��0

ey
�

(8.51)

To illustrate the shape of the velocity field, we draw the velocity vector as a function
of the “depth” � 0. This yields a spiral known as the Ekman spiral (see Fig. 8.4).

A second comment about (8.48) concerns the thickness of the Ekman layer
which is

e D L

s
2E

jn � ezj

where L is the length scale. This expression shows that if the wall is parallel to
the rotation axis, the thickness of the Ekman layer is infinite. In fact, in this very
case, the analysis that led to (8.48) is no longer valid. This difficulty arises for
instance when one deals with the geostrophic flow inside a sphere. At the equator,
the boundary layer is singular: this is the equatorial singularity. It may be shown
that for latitudes within an equatorial band of latitudinal extension O.E1=5/, the
thickness of the layer is O.E2=5/. Thus, for a development in powers of E1=2, the
new thickness of the layer, scaling like E2=5 appears to be of infinite size since
limE�!0 E2=5�1=2 D 1. More details may be found in the original paper of Roberts
and Stewartson (1963).

Fig. 8.4 The Ekman spiral:
on the boundary
u.�0 D 0/ D 0, while outside
the boundary layer
u.�0 ! 1/ D ex
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8.4.3 Ekman Pumping and Ekman Circulation

When we derived (8.48), we just solved the momentum equation, leaving aside mass
conservation. It may well be that r � Qu0 ¤ 0. Fortunately, we need not throw away
our solution (8.48). Let us be more explicit. If x and y are the coordinates in the
tangent plane, the projection of (8.48) on this basis gives

(
Qu0x D �.u0x cos � 0 C u0y sin � 0/e��0

Qu0y D .u0x sin � 0 � u0y cos � 0/e��0 (8.52)

where u0x and u0y are the x and y-components of the geostrophic flow taken on the
wall. We now compute the divergence of Qu0 noting that r � u0 D 0. We have:

@Qu0x
@x

C @Qu0y
@y

D
 
@u0x
@y

� @u0y
@x

!
sin � 0e��0 D � .n � r � u0/ sin � 0e��0

This derivation is purely formal because we did not take into account the curvilinear
nature of the coordinates; however, it keeps the dominant terms. This expression
shows that the divergence is actually proportional to the normal component of the
vorticity of the geostrophic flow.

This divergence is generally non-zero and is compensated by a flow along n. Let
us denote this flow Qu0. It verifies

@Qu0x
@x

C @Qu0y
@y

C @Qu0

@�
D 0

Setting R.x; y/ D n � r � ugeo, then

@Qu0

@�
D R.x; y/ sin � 0e��0

which is easily integrated, remembering that � D p
2E � 0; it turns out

Qu0 D �p
ER.x; y/ e��0

cos


� 0 � �

4

�
(8.53)

The important point shown by this expression is the fact that this new component of
the boundary layer flow is of a higher order in powers of

p
E, so that the foregoing

results are still valid, fortunately! We thus write

Qu0 D p
E Qu1
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This new component of the boundary layer flow is very important for the large-
scale dynamics. We indeed observe that it is non-zero on the boundary at � D 0.
This means that in order for the boundary conditions to be verified at first order, the
boundary layer flow needs to be completed by an interior one of the same order. Let
us call this new interior flow u1. As u0 it verifies the geostrophic (8.7) but it meets a
different boundary condition. Indeed, we now demand that

.u1 C Qu1/ � n D 0 (8.54)

on the boundary.
The new component of the boundary layer flow, Qu1, is called the Ekman pumping.

This “pumping” is similar to the one we met with the Blasius flow. It may just be
either positive of negative, meaning that the layer either pumps in or out the matter,
depending on the sign of the local vorticity. This pumping forces the component u1
of the interior flow. This new component is known as the Ekman circulation. We
shall see below that despite its small amplitude, Ekman circulation is crucial to the
large-scale dynamics.

We have now all the pieces to write down the steady solution complete at first
order. With obvious notations, we may write it:

u D ugeo C Qugeo C p
E.Qupump C ucirc/C O.E/ (8.55)

8.4.4 An Example: The Spin-Up Flow

The spin-up flow is the large-scale flow that arises within a rotating fluid when an
exterior stress increases the angular velocity. For instance, when a liquid in some
container rotates as a solid body, like the container, at an angular velocity �, a
sudden change of the angular velocity of the container, by��, will generate a fluid
flow, that will lead to the new solid body rotation at � C ��. This transient flow
may be split in several steps one of which is quasi-steady and called the spin-up (or
spin-down) flow.

8.4.4.1 Spin-Up Driven by a Solid Plane

The simplest set-up to study a spin-up flow is to consider a viscous incompressible
fluid in the neighbourhood of a solid plane staying at z D 0. The plane rotates
uniformly at � D ˝ez. The viscous fluid is in the half-space z > 0. The rotation of
the plane is increased instantaneously by �˝ez. After a transient of a few rotation
periods, Ekman layers have formed and a quasi-steady flow takes place.
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To study this flow we use a frame attached to the bounding plane. Far from this
plane the fluid rotates at the angular velocity ��˝ez. In this region, viewed from the
plane, there is a geostrophic flow vgeo D ��˝ez � r. This is our basic geostrophic
solution that needs to be completed by Ekman layers. Inserting this solution into
(8.49), we get the needed boundary layer corrections so that v D 0 at z D 0. Using
cylindrical coordinates .s; '; z/, we get

�
us D �˝s sin � 0e��0

u' D �˝s.cos � 0e��0 � 1/
(8.56)

This solution shows that the spin-up flow is diverging in the boundary layer (us > 0),
which shows that this boundary layer “sucks” the outer fluid. Since the boundary is
plane we can use (8.53). Noting that n D ez and

R.x; y/ D ez � r � .�2�˝ez � r/ D �2�˝

we deduce that

Quz D 2�˝
p
E cos

�
� 0 � �=4� e��0

This component of the boundary layer flow induces a pumping of the outer fluid into
the boundary layer because Quz.0/ ¤ 0. Thus, in order that the boundary condition
uz D 0 be verified, the outer solution needs to be completed by an O.pE/ solution
of the inviscid equations such that

u.� 0 D 0/ D �Quz.�
0 D 0/

In Fig. 8.5, we show schematically the radial and vertical components of the
boundary layer flow. A solid body rotation should be added in thought.

Fig. 8.5 Meridian view of a
spin-up flow in the
neighbourhood of a rotating
plane. The radial component
of the flow only exists in the
boundary layer. To insure
mass conservation the
boundary layer absorb some
mass from the interior. In a
spin-dow flow all the flows
would be reversed

E1/2

Rotation axis

Pumping

Radial flow

Z
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The radial flow in the boundary layer is easily observable in a glass of water when
we try to dissolve some sugar by stirring the water with a tea-spoon. When we stop
stirring, we observe that the sugar gathers on the rotation axis of the water on the
bottom of the glass. This is the signature of the radial component of the boundary
layer flow, which is converging in the spin-down case, gathering the sugar at the
centre.

8.4.4.2 Spin-Up Within a Sphere

As a second example, we now consider a viscous incompressible fluid inside a
sphere whose angular velocity increases very slowly with time. In this ideal case
the spin-up flow is steady. Let P̋ be the acceleration of the rotation, the natural
scaling of the velocity field is

v D
P̋R
2˝

u

If we choose .2˝/�1 as the time scale and the radius of the sphere R as the length
scale, the momentum equation written in a frame corotating with the sphere reads

@u
@�

C Ro.u � r /u C ez � u C ez � r D �rp C E�u

The acceleration term P��r that yields the term ez �r is sometimes called the Euler
force. The Rossby number is assumed to be vanishingly small since we focus on
very small accelerations. The nonlinear terms are therefore neglected and since we
look for steady solutions, we’ll have to solve

8<
:

ez � u C ez � r D �rp C E�u
r � u D 0

u D 0 on r D 1

(8.57)

To solve this system, it is convenient to split the solution in the following way:

u D 2zez � ses C ugeo.s/C Qu

where we used the cylindrical coordinates .s; '; z/. The 2zez � ses terms represent a
particular solution of vanishing divergence, that cancels the forcing term ez � r.
But this particular solution does not meet the boundary condition n � u D 0.
Unfortunately the geostrophic solution which is parallel to e' cannot help. The mass
flux of this particular solution on the bounding sphere needs thus to be compensated
by the boundary layer mass flux. The particular solution therefore represents the
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Ekman circulation part of the solution. Since this circulation is E1=2 times smaller
than the geostrophic part, we conclude that ugeo is O.E�1=2/. It means that that ugeo

diverges at zero viscosity, but this is not surprising since the sphere cannot entrains
an inviscid fluid!

Let us come back to the resolution of our problem. We note that the Ekman
pumping on the wall is such that

Qur C er � .2zez � ses/ D 0 H) Qur D 3 sin2 � � 2

where � is the polar angle of the spherical coordinates. On the other hand (8.15)
shows that ugeo.s/ D U.s/e' and induces a boundary flow given by (8.49)

� Qu� D �U.sin �/ sin ˛ e�˛
Qu' D �U.sin �/ cos˛ e�˛ (8.58)

where

˛ D �

r
cos �

2

Here, we’ll assume that cos � > 0 thus restricting our discussion to the Northern
hemisphere. We note that on the bounding sphere r D 1 and s D sin � . Finally, the
geostrophic flow with its boundary layer correction reads

�
u� D �U.sin �/ sin ˛ e�˛
u' D U.s/� U.sin �/ cos˛ e�˛ (8.59)

Mass conservation gives the relation between pumping and the foregoing flow. At
the leading order we have

@Qu
@r

C 1

sin �

@

@�
.sin � Qu� / D 0 at r D 1

Using the boundary layer variable � D .1 � r/=
p
E and the previous expression of

Qu� , we get

@Qu
@�

D �
p
E

sin �

@

@�
.sin �U.sin �/ sin ˛ e�˛/

This equation is integrated between 0 and C1 and leads to:

Qur .� D 0/ D
p
E

sin �

@

@�

�
sin �U.sin �/p

2 cos�

�
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Fig. 8.6 Left the analytic solution (8.60) of the geostrophic flow associated with the spin-up flow
in a sphere (solid line) and the numerical solution (pluses). The Ekman number is 10�7. The
difference between the two curves is less than a percent outside the Ekman layer. Right a meridian
view of the velocity field. The Ekman number is E D 4�10�4 large enough to make the boundary
layer flow clearly visible

Since we know the expression of Qur .� D 0/, we get the differential equation for
U.sin �/. We finally get

U.sin �/ D �
r
2

E
sin �

�
1 � sin2 �

�3=4

valid on the sphere r D 1. The geostrophic flow therefore reads

ugeo.s/ D �
r
2

E
s
�
1 � s2

�3=4
e' (8.60)

using the cylindrical coordinate s D r sin � .
We have plotted this solution together with the full numerical solution of (8.57)

in Fig. 8.6 (left) when E D 10�7. The difference between the analytic and numerical
solution is not noticeable. That would not be the case if we used E D 4 � 10�4
as in Fig. 8.6 (right) to better show the meridian flow. In fact, at E D 4 � 10�4 the
boundary layer theory is not performing well (although E is small).

8.4.4.3 Conclusion: The Spin-Up Time

We have summarized in Fig. 8.7 all the components of a spin-up flow in a spherical
container, including the boundary layer singularity.

One remarkable property of the spin-up flow is that the Ekman circulation
controls the time scale of the spin-up. Indeed, this circulation insure the transport
of angular momentum from the walls to the interior. We may thus evaluate the time
scale of the process of synchronization between the fluid and the container. This is
typically the turnover time scale of the Ekman circulation. If L is the characteristic
size of the container, the amplitude of this circulation is ˝L

p
E. It leads to the

spin-up time scale:
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Fig. 8.7 Schematic view of a
spin-up flow within a sphere.
u0 is the geostrophic
azimuthal flow; Qu0 is the
meridional flow within the
Ekman layer and Qu1 is the
Ekman pumping forcing the
Ekman circulation u1
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E1/5

Equatorial
singularity
ofthickness E2/5
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ofthickness E1/2
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tspin�up D L

˝L
p

E
D ˝�1

p
E

D Lp
˝�

(8.61)

This expression shows that the spin-up of the fluid is realized on a time scale much
shorter than the one imposed by viscous diffusion. Indeed,

Tvisc D L2

�
D ˝�1

E
� ˝�1

p
E

since E  1.
This new time-scale may be revealed by a simple experiment using a glass of

water. If we make rotating the water within the glass, we can measure the time by
which the water has ceased to rotate after our forcing has been stopped. Using a
glass of water of 7 cm in diameter, rotating the water at one round per second, we
find that the fluid flow has almost vanished 2.5 min after. Computing the diffusion
time scale, we find Tvisc D 0:0352=10�6 
 20min, which is much larger. This spin-
down flow has a time scale, which we evaluate from (8.61), of 20 s, which is much
closer to our observation. Within such an experiment, nonlinear effects are quite
strong since the rotation ends at zero; however, orders of magnitude are correct,
especially if we take a mean rotation of half a round per second.

8.5 Hurricanes

8.5.1 A Qualitative Presentation

In the introduction to this chapter, we mentioned one of the most violent phenomena
in the terrestrial atmosphere, namely the hurricanes. We are now ready to explore
their dynamics in some details.



8.5 Hurricanes 317

First, let us observe that a low pressure region in the Earth atmosphere cannot
be filled up by the geostrophic flow that it triggers: the winds are orthogonal to
the pressure gradient. Thus, only non-geostrophic effects may fill up a low pressure
region. Because of their weakness, the lifetime of such a pressure field is quite long.

In the case of a hurricane, the low pressure field has an especially long life time
due to the existence of an energy source: the tropical ocean.

The dynamics of a hurricane can be understood with a simple model. One can
then derive the value of the central depression as a function of the temperature of
the ocean and of the upper atmosphere. However, before getting into these details,
we shall first give a qualitative description of the hurricanes.

Let us consider the air near the surface of a tropical ocean: the percentage of
water vapour may be quite high there, due to the important evaporation. Such a
mixture is unstable to convection (see Chap. 7): a rising fluid element will face
an adiabatic expansion which triggers the condensation of water vapour, releasing
latent heat, which amplifies the rise. This process is at the origin of cloud formation
and is called wet convection.

The low pressure created by the rising elements forces a geostrophic wind,
which contributes to make the sea more rough. The fraction of water vapour within
the air thus increases. The boundary layer has a radial drift which tries to fill up
the depression. Within the centre of the depression air is forced to rise, releasing
more and more latent heat and thus making the pressure even lower. Thus, the
phenomenon amplifies. However, we may observe that there is a maximum value
to the fraction of water vapour in the air: this is the saturation.

Thus we understand why hurricanes appear only in the tropics: the hotter the air,
the larger the mass fraction of water vapour. At lower temperatures, the water vapour
content is not enough to maintain the winds. It is also clear that above a continent
a hurricane dies. Finally, computing the resulting Coriolis force on the ascending
air column, we find that the depression should drift to the West as usually observed.
This tendency is sometimes counteracted by an anticyclonic air mass.

8.5.2 The Steady State: A Carnot Engine

A hurricane is actually a true Carnot engine, running with a heat source, the ocean,
and a cold source, the upper atmosphere. The thermal energy of the ocean is partly
converted into mechanical energy: the wind.

In Fig. 8.8 we show the Carnot cycle followed by a fluid element. From A to B
the fluid is heated at constant temperature: its water vapour mass fraction increases.
From B to C , it follows an adiabatic expansion but during the rise of a fluid parcel
water droplets form: it rains! From C to D, the fluid radiates its heat into space
and cools down. Next, from D to A the model assumes that the fluid supports
an adiabatic compression which is never realized actually. There is no streamline
between A andD but this is no problem if the fluid elements have the same entropy
at these two points. This is usually assumed.
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Fig. 8.8 A meridional view
of a hurricane

AB

C D

Tropical ocean

rain

Stratosphere

Let us now be a little more quantitative. In a steady regime, along a streamline,
we have

d.
1

2
v2 C gz/C dP

�
� f � d l D 0 (8.62)

where f represents the forces due to viscosity. We now integrate this relation along
the cycle that we just described. It turns out that

I
f � d l D

I
dP

�

For a mixture of air and water vapour, assumed to be an ideal gas, we have

dh D cpdT D Tds C dP

�
� d.Lvq/ (8.63)

where Lv is the latent heat of vapourization and q is the mass fraction of water.
Therefore along the cycle

H
dP=� D � H Tds, and

I
f � d l D �

I
Tds

which shows that the entropy production is due to the friction (viscous dissipation).
Now, if Tsc and Tsf are the temperature of the hot and cold sources respectively, sA
and sB the entropy at A and B , then

�
I

f � d l D
I

Tds D .Tsc � Tsf /.sB � sA/ (8.64)
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since sC D sB and sD D sA. Besides, from (8.63) and � D P=.R�Tsc/, we have

sB � sA D R� ln.PA=PB/C Lv

Tsc
.qB � qA/ (8.65)

Now we have to evaluate the power dissipated by friction. The main contribution
to
H

f � d l comes from the leg AB which is in the atmospheric boundary layer. The
flow there follows a spiral, namely the azimuthal geostrophic flow combined with a
radial drift of the (turbulent) Ekman layer. Using (8.62) between A and B , we see
that the work of friction forces comes from the pressure (just like for the Poiseuille
flow). It turns out that

I
AB

f � d l D �
I

AB

dP

�
D R�Tsc ln.PA=PB/ (8.66)

since the temperature is constant on AB and P D R��T . Finally, combining (8.64),
(8.65) and (8.66), we get

R�Tsf ln.PA=PB/ D "LV .qB � qA/ (8.67)

where we introduced " D .Tsc � Tsf /=Tsc which is nothing but the efficiency of
the Carnot cycle. Equation (8.67) shows that the depression of the hurricane will
be all the stronger that qB be the larger. However, the highest quantity of water
vapour in the air is reached when the air is saturated. Setting qB to this maximum
value, we obtain the minimum central pressure, that is the strongest hurricane. If
Tsc is expressed in Celsius degrees, a very good approximation of q at saturation is
given by

qsat D 380:2

P
exp

�
17:67 Tsc

243:5C Tsc

�

where P is expressed in Pascals.
Let us take the case of a hurricane blowing in the Northern Atlantic ocean. A

typical temperature in the Caribbean sea is 28 ıC, while that of the stratosphere is
Tsf D �60 ıC; using LV = 2.3 106 J/kg and assuming that outside the hurricane the
partial pressure of water vapour is 75 %, we find that the ratio PA=PB verifies

ln.PA=PB/ D 0:256.PA=PB � 0:75/

which solution is PA=PB ' 1:09. The strongest hurricane has a central pressure
about 930 hPa. For comparison, Emily (Fig. 8.9) had a central pressure at 960 hPa.
However, some hurricanes in the Eastern Pacific ocean have reached pressures as
low as 870 hPa.
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Fig. 8.9 The hurricane
Emily near the coast of North
Carolina (USA) in September
1993

8.5.3 The Birth of Hurricanes

The foregoing very simplified model allows us to understand the way hurricanes
work. However, it does not teach us how such vortices arise. Indeed, the conditions
for their existence are realized most of the time in tropical oceans. Thus, we would
expect that they would be always present. However, this is by far not the case:
Hurricanes are rather rare features in the atmosphere. According to recent studies,
this scarcity seems to be the consequence of the finite-amplitude nature of the
instability that leads to a hurricane. At the origin of the phenomenon, we mentioned
the wet convection. This convection is usually giving birth to gentle clouds like
cumulus, which extend over a fraction of the troposphere. When a hurricane sets in,
wet convection is able to connect the ocean (the heat source) with the stratosphere
(the cold source), otherwise the Carnot engine does not work. This is like if a
cumulus extends over the whole troposphere. Only, a small fraction of tropical
storms reach such an amplitude and turn into a hurricane.

In fact, many sides of the hurricanes dynamics remain obscure because of their
complexity. For instance, only very few hurricanes reach the strongest state. Likely,
the storm sweeping the ocean, generate an upwelling of cold water, which cools the
surface water and decreases the water vapour content of the air near the surface.
Hence, a good model needs to take into account the dynamic coupling between the
ocean and the atmosphere, and this is not an easy matter.
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8.6 Exercises

1. Show by a direct transformation (8.1). This demonstration may be done in three
steps: (i) splitting the velocity field into a solid rotation and a remaining flow,
(ii) noting that this flow should be expressed using the unit vectors of the rotating
frame and (iii) observing that the time dependence of the velocity changes.

2. Show that even with viscosity, the frequency of inertial is such that j!j � 1.
3. Show that the stream function of axisymmetric inertial modes obeys a hyperbolic

equation similar to the Poincaré one.
4. Explain why hurricanes do not appear on the equator.

Further Reading

There is only one monograph dealing entirely with rotating fluids: The theory of
rotating fluids by Greenspan (1969), unfortunately out of print. However, some
insights may be found in Geophysical fluid dynamics by Pedlosky (1979) but in the
context of the ocean and atmosphere dynamics. A recent review of spin-up flows is
given by Duck and Foster (2001). A more detailed presentation of hurricanes may
be found in Emanuel (1991).
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Chapter 9
Turbulence

As we pointed it out in the first pages of this book, the understanding of turbulence
remains one of the challenges of nowadays physics. The goal of this chapter is to
introduce the reader to the main approaches that are used to deal with this difficult
problem.

9.1 The Fundamental Problem of Turbulent Flows

9.1.1 How Can We Define Turbulence?

Defining a turbulent flow is not an easy matter because, to be precise, we need some
notions that we shall develop below. However, if we are satisfied with general ideas,
we can make it. First, let us observe that turbulent flows are quite disordered: a
lot of vortices seem to be constantly appearing and disappearing in an essentially
random way; this seems to be their main feature. To characterize this disorder,
correlations are very useful. Let us introduce this notion in a simple way. If, in
a turbulent flow, we record one component of the velocity at two distinct points
A and B. The result is like the curves plotted in Fig. 9.1. These curves show an
evolution of the physical quantities that looks like impredictable. To characterize
the nature of this signal, one uses the autocorrelation function, which is the average
over time of the product VA.t/VA.tCT /. The autocorrelation characterizes in some
way the similarity of the function with itself at a different point. If the function
changes nearly randomly, VA.tCT / is statistically independent of VA.t/. Of course
T cannot be too small, for the functions are continuous. The random nature appears
when T is much larger than a specific time interval Tc which is called the correlation
time. When this time is finite, the flow has a chaotic evolution. This is the case for
a turbulent flow, but such a flow owns an “additional” chaos, namely a “spatial”
chaos. Indeed, if we consider two points A and B at some large distance from one
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A

B

Fig. 9.1 Time evolution of the velocity at two distinct points A and B in a turbulent flow. No
similarities between the two curves can be detected, except their random nature

another, the velocities at these points appear uncorrelated. Only when the distance
is short enough, less than the correlation length, do the velocities show correlated
values, so that hVAVBi ¤ hVAi hVBi, h i being a statistical average.

With these ideas in mind, it is easy to define turbulent flows: they are these flows
where the correlation length is shorter that the size of the fluid domain and whose
correlation time is shorter than the time scale we focus on. Turbulence thus appears
as a fluid motion endowed with a “spatio-temporal chaos” or a “spatio-temporal
decorrelation”.

9.1.2 The Closure Problem of the Averaged Equations

The apparent random nature of a turbulent flow suggests that these flows should
be studied using the tools of Statistics. We indeed suspect that only some mean
quantities are really important for the understanding of the properties of the flow.
Therefore, the effort should be concentrated on the derivation of the equations
governing these mean quantities. This derivation raises a very difficult problem that
has still not been circumvented. In order to present it in a simple way, let us consider
the turbulent flow of some incompressible fluid. We write the equations of motion
in a symbolic way:
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�
@tv C @.vv/ D �rP C�v
r � v D 0

(9.1)

Let us now write the averaged equation. We use the averaging operator h i which we
assume to commute with all the derivative operators. Applying this to the foregoing
system, we get:

�
@t hvi C @ hvvi D �r hP i C� hvi
r � hvi D 0

(9.2)

which governs the evolution of the mean velocity hvi. However, this system is not
closed since the quantity hvvi is unknown. It is usually different from hvi2. Thus, we
need a new equation to constrain this quantity. The way to get this new equation is
through (9.1) which is first multiplied by the velocity and then averaged. It turns out
that we get a new equation like:

@ hvvi
@t

C @ hvvvi D �r hPvi C hv�vi

The important feature of this new equation is that it contains a term using hvvvi,
which is a triple correlation. Hence, the evolution of double correlations, like hvvi,
is controlled by the triple correlations and we easily guess that the evolution of the
triple correlations depends on the one of fourth order correlations hvvvvi etc.

Hence, we always have a set of equations which contains a larger set of
unknowns: this is the famous problem of the closure of the mean-field equations,
for which the general solution is still missing.

9.2 The Tools

In order to continue this study, we now need to introduce the good tools which will
allow us to deal with the random nature of turbulent flows. Very naturally, we shall
borrow these tools to Statistical Physics.

9.2.1 Ensemble Averages

An ensemble average hXi of a quantityX is the average derived from N independent
experiments measuring this quantity when N goes to infinity. Thus

hXi D lim
N!1

1

N

NX
nD1

Xn
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For the velocity field we have:

hv.r; t/i D lim
N!1

1

N

NX
nD1

vn.r; t/

Note that the mean field remains a function of space and time. We easily verify that
taking the ensemble average of a quantity is an operation that commutes with all
types of differentiation. Hence

�
@v
@r

�
D @ hvi

@r
:

9.2.2 Probability Distributions

In the following of the chapter, the notion of probability distribution or that of
probability density function will be used very often. We thus need to define the
meaning of these tools.

Let us assume that we are analysing the pressure fluctuations and are interested
in the probability of finding this quantity in the interval � � 1; x�. We denote this
probability FP .x/, where the index P means that P is the random variable. The
functionFP is called a probability distribution function. From this definition it turns
out that

• FP .x/ is not decreasing
• FP .x/ is continuous on right
• FP .�1/ D 0 and FP .C1/ D 1.

If this function is differentiable, then F 0
P .x/ is called the probability density

function, often called the “pdf”. Physically, it means that F 0
P .x/dx is the probability

of finding P in the interval �x; x C dx�.

9.2.3 Moments and Cumulants

The moments of a probability distribution are the averages of the powers of the
random variable:

Mn D hPni D
Z C1

�1
xnF 0

P .x/dx (9.3)

The first order moment is just the average or mean also called mathematical
expectation or expected value.
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The moments of P � hP i are said to be centered. The variance is the centered
moment of order two:

˝
.P � hP i/2˛

and the root mean square is the square root of the variance.
The cumulant of order n of a random variable is the difference between the n-th

order moment of this variable and the same moment of the gaussian distribution that
has the same variance and the same mean as the given random variable.

9.2.4 Correlations and Structure Functions

In addition to the correlations that we already introduced at the beginning of this
chapter, we shall also need n-points correlations which are the averages of a given
function taken at n different points.

hf .x1/f .x2/ : : : f .xn/i

As far as vectorial quantities are concerned, like the velocity, we may mix the
components like in

˝
vi .r1/vj .r2/ � � � vk.rn/

˛

which leads to the definition of new tensors.
Structure functions are quantities like

Sn D h.f .r1/� f .r2//ni

which are easily related to two-points correlations.

9.2.5 Symmetries

The study of turbulent flows is much simplified when some symmetries are verified.
Unfortunately, real flows usually own little symmetries or very approximately.
Nevertheless, their use is very handy to reduce a given problem to its essential
features.

Five symmetries may actually be verified by a turbulent flow:

• Homogeneity: This is the invariance of the properties of turbulence (all the
moments for instance) with respect to space translations. This is a very strong
hypothesis that is verified in only small regions. However, it generates important
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simplifications that are very useful to understand the problems generated by
turbulence.

• steadyness/stationarity: This is invariance with respect to time translations. This
is a less constraining hypothesis, but it is often difficult to really know when the
flow is really steady on average.

• Isotropy: This is the invariance of the turbulence with respect to space rotation
O.3/. It is very useful in homogeneous turbulence in order to simplify the
calculations (of course, it cannot exist in non-homogenous turbulence).

• Parity: This is the symmetry with respect to a point or a plane. One may see it
as an invariance with respect to a change of sign of all the vectors. It cannot be
reduced to a combination of rotations. It allows the elimination of quantities like
helicity, which change sign when this symmetry is imposed.

• Scale invariance: This is the invariance with respect to transformations like
v.r; t/ ! �hv.�r; �1�ht/. The solutions of Navier–Stokes equation satisfy this
symmetry only if h D �1. This is just the similarity of flows at the same
Reynolds number that we studied in Chap. 4. Now, if there is no viscosity, then
h is not constrained (as long as � > 0). In turbulent flows, which are usually at
high Reynolds numbers, this symmetry may be verified in some range of scales.

In many textbooks, isotropic turbulence refers to a case which includes both
isotropy and parity invariance. Here, we shall be more restrictive and always
mention the use of parity invariance.

9.3 Two-Points Correlations

After this short presentation of the problem of turbulence and the basic tools that
are used to deal with it, we shall now focus on the two-point correlations because
they play an important role in the analysis of turbulent flows. To make this study
easier we shall restrict ourselves to the case of homogeneous turbulence because
this case owns all the universal properties of turbulence. Although more general, the
non-homogeneous case is very dependent on this problem and can be discussed in a
second step.

9.3.1 The Reynolds Stress

Let us come back to the mean-field equations using as in the introduction the case
of an incompressible fluid. We now decompose the velocity field as:

v D hvi C v0 (9.4)
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where h� � � i is an ensemble average. The fluctuation v0 is necessarily such that hv0i D
0. This decomposition is known as Reynolds decomposition. Inserting it in Navier–
Stokes equation, we get

�

�
@ hvi
@t

C @v0

@t
C hvi � rv0 C v0 � rhvi C hvi � rhvi C v0 � rv0

�
D

�r hP i � rP 0 C 
�hvi C 
�v0 (9.5)

r � hvi C r � v0 D 0 (9.6)

Averaging these equations, we get:

�

�
@ hvi
@t

C hvi � rhvi C ˝
v0 � rv0˛� D �r hP i C 
�hvi (9.7)

r � hvi D 0 (9.8)

These new equations contain a new quantity, namely h�v0 � rv0i which is related to
the Reynolds stress tensor:

ŒR� D �
˝
v0 ˝ v0˛

where ˝ denote the tensorial product. The components of ŒR� are

Rij D �hv0
iv

0
j i

Now, (9.6) and (9.8) imply

r � v0 D 0 (9.9)

so that

�
˝
v0 � rv0˛

i
D �@k

˝
v0
iv

0
k

˛ D @kRik

if � is constant.1

1Let us note here that the true stress induced by the correlation hv0 ˝ v0i is rather �Rij since the
momentum equation (9.7) may also be written

�
Dhvi i

Dt
D @j �ij

with �ij D � hP i C
.@i hvj i C @j hvi i/�Rij. Note also that the Reynolds tensor is often defined
as hv0 ˝ v0i.
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We observed in the introduction of this chapter that the turbulence problem
comes from our ignorance of how to express Rik as a function of the mean-fields
hvi and hP i. Modeling turbulence is therefore equivalent to finding a way of
relating these quantities. As we may suspect it, no universal way is known yet.
Understanding the present ones, which are all ad hoc at some level, requires a good
knowledge of the properties of the Reynolds tensor. This demands a study of the
velocity two-point correlations.

9.3.2 The Velocity Two-Point Correlations

The first step in studying the properties of the Reynolds tensor needs the investiga-
tion of a slightly more general quantity, namely

Qij.rA; rB/ D
D
v0
i .rA/v

0
j .rB/

E
(9.10)

which is the second order tensor of the velocity (fluctuations) correlations taken at
two points A and B. In order to simplify the study, we assume that there is no mean
flow, namely hvi D 0. Thus, the velocity and its fluctuations are identical.

In full generality, this tensor is a function of six space variables and two time
variables. Again, we simplify the matter by assuming that the velocities are taken
at the same time. Moreover we drop the time variable since we work on the spatial
properties of the tensor. We also set rA D x and rB D x0 D x C r. Thus

Qij.x; x0/ D ˝
vi .x/vj .x C r/

˛
(9.11)

The first (elementary) property of ŒQ� is that

Qij.x; x0/ D Qji.x0; x/ (9.12)

In addition, since we are working with an incompressible fluid, (9.9) is verified and

@iQij D @0
jQij D 0 (9.13)

where @0
j D @=@x0

j .
Let us now assume that the turbulence is homogeneous. Its properties are thus

independent of the point that is considered. Consequently,Qij depends only on the
difference between the two vectors x and x0, so that Qij � Qij.r/. We further note
that

Qij.0/DRij

and that RiiDTr([Q])(0) is just twice the turbulent kinetic energy per unit mass.
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The homogeneity of turbulence allows us to reduce the number of independent
components of ŒQ�. Actually, as we shall see, they are only three. First of all, (9.12)
implies that

Qij.r/ D Qji.�r/ (9.14)

So that we are left with only six independent components. However, we have to
build up a second order tensor that only depends on the vector r. Since second order
tensors are built up from tensor products using tensors of lower orders, the only
possibility is

Qij D A.r/ıij CB.r/
ri rj

r2
CH.r/�ijk

rk

r
(9.15)

The three functions A.r/; B.r/ and H.r/ are the three independent components.
They are unknown, but if we use (9.14), we find that they verify

A.�r/ D A.r/; B.�r/ D B.r/; H.�r/ D H.r/

Furthermore,H is a pseudo-scalar.2 One consequence is: if the turbulence is parity-
invariant then H is zero. We shall see below that this quantity is related to helicity.

Now we may further constraint the unknown components of Qij using the
relation of incompressibility. Equation (9.13) leads to

rAC err � .Ber /C rH � er D 0

Let us further restrict our discussion to that of isotropic turbulence. In this case,
the functions no longer depend on the direction of r, but only on r D jjrjj.
Incompressibility then relates A and B

@A

@r
C 1

r2
@r2B

@r
D 0

We now introduce the longitudinal and transversal velocity correlations. These
quantities may indeed be measured experimentally, and they are usually used instead
of A and B . The longitudinal component of the velocity is the one which is parallel
to r. We call it v`, and thus v` D v � r=r .

2A pseudo-scalar is a scalar quantity the sign of which depends on the orientation of the vector
basis. For instance, the determinant of three vectors (in three dimensions) is a pseudo-scalar. In our
case, if X et Y are two vectors, from the definition of ŒQ�, XiYjQij is a true scalar. Thus

A.X � Y/2 C .r � X/.r � Y/B=r2 CH�ijkXiYj rk=r

is a true scalar. In this expression we see that the last term is the determinant of three vectors times
H . Thus H is a pseudo-scalar.
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The transversal component is just the remaining vector vt D v � v`r=r . The
longitudinal and transversal correlations are usually denoted f and g. From these
definitions and using the expression (9.15) of Qij, we easily find that

f D Qijri rj =r
2 and g D Qij.vt /i .vt /j =kvtk2

so that

f D AC B and g D A

Incompressibility allows us to relate g to f , namely

g D 1

2r

@r2f

@r
(9.16)

Finally, we get the expression of Qij for the homogeneous isotropic turbulence of
an incompressible fluid:

Qij D 1

2r

@r2f

@r
ıij � r

2

@f

@r

ri rj

r2
CH.r/�ijk

rk

r
(9.17)

We end this discussion with a final remark on the behaviour of Q.r/ when the
distance between the point grows without bound. We said in the introduction
that turbulence was also characterized by a finite correlation length Lc . Hence, if
r � Lc then the velocity correlations should be negligible. It is therefore legitimate
to assume:

lim
r!1Qij.r/ D 0 (9.18)

9.3.3 Vorticity and Helicity Correlations

We shall need later another tensor, namely the one of vorticity correlations at two
points:

˝ij D ˝
!i .x/!j .x0/

˛
(9.19)

Just like the velocity correlation tensor, this tensor depends on six independent
variables x and x0. However, !i D �ikl@kvl , but x and x0 are independent; we may
thus write:

˝ij D �ikl �jmn
@2

@xk@x0
m

˝
vl .x/vn.x0/

˛ D ��ikl �jmn @2

@rk@rm
Qln.r/
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where we used the homogeneity of turbulence and the relations

@Q

@xj
D �@Q

@rj
;

@Q

@x0
j

D @Q

@rj

since r D x0 � x. Now, using (12.1) together with incompressibility (9.13), the
foregoing relation leads to the following expression:

˝ij D @2Qkk

@ri@rj
��Qji � ıij�Qkk (9.20)

where� is the Laplacian.
Finally, we also need the cross-correlation vorticity-velocity, which is called

helicity correlation or just mean helicity. This is

˝
!i .x/vi .x0/

˛ D �ijk
@vk
@xj

vi .x0/ D �ijk
@

@xj
hvk.x/vi .x0/i

D �ijk
@Qki

@xj
D �ijk

@Qik

@rj
D � @

@rj

�
2H.r/rj

r

�
(9.21)

This definition does not depend on the order of points. Indeed, if we exchange x and
x0, we find

˝
!i .x0/vi .x/

˛ D �ijk
@Qik.x; x0/

@x0
j

D �ijk
@Qik.r/
@rj

since Qik.x; x0/ D Qik.x0 � x/ D Qik.r/.

9.3.4 The Associated Spectral Correlations

When we analysed instabilities, we found it convenient to decompose the unknowns
on a basis of orthogonal functions. When we are dealing with turbulent flows such
a decomposition is also useful. In the simple case of homogeneous turbulence, the
Fourier basis is appropriate. The Fourier transform of the tensors describing the
correlations own interesting properties which give another view of turbulence, in
particular on its energy side.

As a first step we introduce the Fourier transform that are used to obtain the
spectral quantities. Thus let us define Of .k/ the Fourier transform of a square
integrable function f .r/ and the inverse transform. We have

Of .k/ D .2�/�3
Z
f .r/e�ik�rd3r and f .r/ D

Z
Of .k/eik�rd3k



334 9 Turbulence

Let us now introduce the Fourier transform of the two point velocity correlation
tensor, namely:

�ij.k/ D .2�/�3
Z
Qij.r/e�ik�rd3r

From (9.14), we easily show that

�ji.k/ D �ij.�k/ D ��
ij .k/ (9.22)

while incompressibility implies that

ki�ij.k/ D 0 (9.23)

The relation (9.22) implies that the symmetric part of Œ�� is real while the
antisymmetric part is purely imaginary. Indeed, if we set:

�ij D 1

2
.�ij � �ji/C 1

2
.�ij C �ji/ D OAij C OSij

then (9.22) gives

OA�
ij D � OAij OS�

ij D OSij (9.24)

Thus quite generally, we may write

OAij D i�ijnan

where a is an unspecified real vector. However, incompressibility implies that
ki OAij D 0 and thus a � k D 0. Hence, we can set a D h.k/k and

OAij D i�ijnknh.k/ (9.25)

The function h.k/ is a pseudo-scalar related, as we may guess, to the helicity of
turbulence. Let us indeed take the Fourier transform of H.r/. One can show (see
exercises) that (9.21) yields

OH D i�ijnkj�in

Using (9.25), we also get OH D 2k2h.k/. Thus the antisymmetric part of �ij is just
proportional to the Fourier transform of helicity correlations. We thus write

OAij D i OH.k/
2k2

�ijnkn
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We can treat in a similar way the symmetric part of �ij, since OSij is a symmetric
tensor that depends only on k. Its most general form is therefore

OSij.k/ D Oe.k/ıij C Og.k/kikj
Again, incompressibility can be used to simplify the expression and we obtain

OSij D Oe.k/
�
ıij � kikj

k2

�
(9.26)

We shall see below that the function Oe.k/ is related to the kinetic energy spectrum
of the turbulence. Finally, we may write the general form of �ij as:

�ij D Oe.k/Pij C i OH.k/
2k2

�ijnkn (9.27)

In this latter expression we introducedPij D ıij �kikj =k2 also called the projection
tensor. Indeed, if a is some vector, Pijaj is a vector which lies in a plane
perpendicular to k since kiPijaj D 0. This tensor often appears when one deals
with incompressible fluids, since the continuity equation implies that the Fourier
transform of the velocity belongs to this plane.

In the same way we dealt with velocity correlations, we can consider vorticity
correlations. Let Zij.k/ be the Fourier transform of˝ij. Using (9.20),Zij.k/ can be
expressed as a function of �ij.k/, namely

Zij D Pijk
2�nn � k2�ji (9.28)

9.3.5 Spectra

We alluded above to the relation between the kinetic energy density and the
Reynolds stress tensor which trace is just twice this quantity. Now, we may focus
on the spectral energy density per unit mass, that is on the kinetic energy which is
contained in the wavenumber interval Œk; k C dk�. This quantity is E.k/ and it is
defined by

Eturb D 1

2

˝
v2
˛ D

Z C1

0

E.k/dk (9.29)

We shall now relate this quantity to �ij. Indeed,

Eturb D 1

2
Qii.0/ D 1

2

Z
�ii.k/d 3k D 1

2

Z C1

0

k2dk
Z
.4�/

�ii.k/d˝k

H) E.k/ D 1

2
k2
Z
.4�/

�ii.k/d˝k (9.30)

where d˝k is the elementary solid angle in the Fourier space.
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In a similar way, we can define the enstrophy spectrum Z.k/ writing

Z D 1

2

˝
!2
˛ D

Z C1

0

Z.k/dk I

where we see that enstrophy is analogous to turbulent kinetic energy, but using
vorticity instead of the velocity field. Similarly as for kinetic energy, we write

Z.k/ D 1

2
k2
Z
.4�/

Zii.k/d˝k

Using (9.28) we deduce that Zii D k2�ii. This allows us to relate the enstrophy and
kinetic energy spectra by

Z.k/ D k2E.k/ (9.31)

Finally, we may also introduce the helicity spectrumH.k/ such that

h! � vi D
Z C1

0

H.k/dk (9.32)

9.3.6 The Isotropic Case

We shall specialize a little more our discussion by focusing on the important case of
isotropic turbulence.

In this case the tensor ŒQ� depends only on the distance r between the two points.
We introduce the function R.r/ D 1

2
Qii.r/ which is just half the trace of ŒQ�. Let

us note that the value of R at r D 0 is just the local mean kinetic energy per unit
mass, R.0/ D Eturb.

If the turbulence is isotropic, then the Fourier transform of Qij is independent of
the direction of the wavevector k, thus

E.k/ D 2�k2�ii.k/ D 4�k2 Oe.k/ (9.33)

following (9.30). If we observe that H.k/ D 4�k2 OH.k/, then

�ij D E.k/

4�k2
Pij C iH.k/

8�k4
�ijnkn (9.34)
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The expression of R.r/ with respect to E.k/ may be derived using the expression
of �ii. Indeed,

R.r/ D 1

2

Z
�ii.k/e

ik�rd3k D 1

2

Z
�ii.k/e

ikr cos �k2dk sin �d�d'

from which it turns out that, after integration on the angular variables and use of
(9.33),

R.r/ D
Z 1

0

E.k/
sin kr

kr
dk (9.35)

Another property of R is its symmetry with respect to the origin R.�r/ D R.r/

(see (9.14)). The values of its (even) derivatives at the origin are also related to
E.k/. Namely

�
@2nR

@r2n

�
rD0

D
Z 1

0

E.k/
@2n

@r2n

�
sin kr

kr

�
rD0

dk D .�1/n
2nC 1

Z 1

0

k2nE.k/dk

where we used that

�
d2n

dx2n
sin x

x

�
xD0

D .�1/n
2nC 1

In particular, the second order derivative verifies

�
@2R

@r2

�
rD0

D �1
3

Z 1

0

k2E.k/dk D �Z
3

(9.36)

which shows that it is related to the local enstrophy Z. It also emphasizes the fact
that velocity correlations are, as expected, maximum at r D 0 since the derivative
is zero and the second derivative is negative.

Relation (9.35) can be inverted (cf exercises) and yields the following relation:

E.k/ D 2

�

Z 1

0

kr sin kr R.r/dr (9.37)

which shows that if the wavelength of the Fourier mode is much larger than the
correlation length, then

E.k/ D 2k2

�

Z 1

0

r2R.r/dr

since for all the values where R.r/ is non-zero, kr  1 and thus sin kr 	 kr.
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This result shows that whatever the dynamics, the infrared behaviour of a three-
dimensional kinetic energy spectrum follows a k2-law. As may be guessed, the
exponent depends on the dimension of space (see Sect. 9.9).

9.3.7 Triple Correlations

The next step in our investigation of turbulence leads us to now examine the triple
correlations since we know that they control the evolution of double correlations.
As for these correlations, we consider the triple correlations in two points. A priori,
we expect two types of triple correlations, namely

Sijk D ˝
vi .x/vj .x/vk.x C r/

˛
and S 0

ijk D ˝
vi .x/vj .x C r/vk.x C r/

˛
(9.38)

However, when the turbulence is homogeneous, these two quantities are related by

S 0
ijk.r/ D Sjki.�r/

Thus, only one type of triple correlations exists for homogenous turbulence.
The tensor ŒS� has some interesting properties that deserve some discussion. It is

obviously symmetric with respect to the first two indices. If the turbulence is parity
invariant, then it should be invariant if we inverse all the axis of coordinates.

Sijk.r/ D ˝
vi .x/vj .x/vk.x C r/

˛
D ˝

.�vi .�x//.�vj .�x//.�vk.�x � r//
˛ D �Sijk.�r/ (9.39)

The third equality comes from the homogeneity of turbulence. Thus, the Sijk are
anti-symmetric with respect to the origin, and

Sijk.0/ D 0 (9.40)

As expected the one-point triple correlations are zero in a homogeneous and parity-
invariant turbulence. It would not be the case with helical turbulence.

As for the double correlations, we shall reduce the expression of ŒS� to a single
scalar function: the longitudinal triple correlation:

k.r/ D ˝
v`.x/2v`.x C r/

˛
(9.41)

We first express Sijk.r/ with the tensors ıij and ri , taking into account the symmetry
with respect to the first two indices. Thus

Sijk.r/ D A.r/ri rj rk C B.r/.ri ıjk C rj ıik/C C.r/ıijrk
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The three functions A;B and C can be expressed with k.r/ if we assume the
isotropy of turbulence and the fluid’s incompressibility. Isotropy implies:

Siik D 0 ” r2AC 2B C 3C D 0 (9.42)

since Siik is the average of a vector which therefore cannot indicate any privileged
direction. Thus it is zero. Incompressibility implies:

@kSijk D 0 (9.43)

A short manipulation leads to

.rA0 C 5AC 2B 0

r
/ri rj C .2B C rC0 C 3C /ıij D 0:

Thus, with (9.42), we get three relations:

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

rA0 C 5AC 2B0

r
D 0

2B C rC0 C 3C D 0

r2AC 2B C 3C D 0

(9.44)

According to its definition,

k.r/ D r3AC r.2B C C/

This equation combined with (9.42) leads to C D �k=2r , while the last two
equations of (9.44) give A D C 0=r . Thus, it turns out that A D .k � rk0/=2r3
and B D .2k C rk0/=4r . Finally,

Sijk.r/ D
�
k � rk0

2r3

�
ri rj rk C

�
2k C rk0

4r

�
.ri ıjk C rj ıik/� k

2r
ıijrk (9.45)

We easily show from (9.39) that the function k is antisymmetric: k.r/ D �k.�r/
and thus k.0/ D 0; in addition k0.0/ D 0. This result may be shown as follows:

@k

@r

�
rD0

D
�
v2`.x/

�
@

@r
v`.x C r/

�
rD0

�
D
��

v2`.x C r/
@

@r
v`.x C r/

�
rD0

�

D 1

3

��
@

@r
v3`.x C r/

�
rD0

�
D 1

3

��
@

@x
v3`.x C r/

�
rD0

�
D 1

3

@

@x

˝
v3`
˛ D 0

since
˝
v3`
˛

is independent of x because of the homogeneity of turbulence.
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9.4 Length Scales in Turbulent Flows

In order to characterize more completely turbulent flows, we need to precise the
various spatial scales which control their dynamics.

9.4.1 Taylor and Integral Scales

The largest scale is the correlation length or the integral scale. It is defined by

`0 D
Z 1

0

R.r/dr=R.0/ (9.46)

Using (9.35) and the fact that
R1
0

sinx
x

dx D �=2, we find the other following
expression:

`0 D �

2

R1
0
k�1E.k/dkR1
0
E.k/dk

: (9.47)

It shows that the integral scale is the mean wavelength weighted by the spectral
density of kinetic energy. This scales therefore points to the most energetic
structures of a turbulent flow. We shall come back to it in the next section.

Another scale, also very useful to characterize turbulent flows, is the Taylor scale.
It is defined by:

T̀ D
r
E

Z
D
s

hv2i
h!2i (9.48)

or

T̀ D
 R1

0
E.k/dkR1

0 k2E.k/dk

!1=2
(9.49)

Using (9.36), we see that this scale is related to the second derivative of the
velocity autocorrelation since

T̀ D
s

� R.0/

3R00.0/

The definition of this scale shows that it characterizes the velocity gradients: broadly
speaking, this scale shows the mean size of vortices.
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9.4.2 The Dissipation Scale

Let us first consider a chunk of fluid of unit mass, within a turbulent flow.
Without any forcing, the turbulence would decay thanks to viscous dissipation. After
some time, it would disappear altogether, the kinetic energy (of turbulence) being
transformed into internal energy. In a steady state, turbulence is stationary because
some energy is injected and compensates the losses by viscous dissipation. We shall
denote by h"i the power injected per unit mass into the turbulence (i.e. into the
random like fluctuations of the flow). In a homogeneous and stationary turbulence,
this quantity is a constant and because of the conservation of energy, this is also the
power dissipated by unit mass.

If we observe that in the spectral space, the viscous force is proportional to k2 Ovk ,
we easily guess that the small scales (large k) are the scales where most of the
dissipation occurs. Let us now assume that this dissipation comes from a single
wavenumber kD . Conservation of energy implies that

h"i 	 �k2
D

Ov2.kD/ (9.50)

for orders of magnitude. However, if Ov.kD/ is in the dissipative range, its associated
Reynolds number is of order unity, thus Ov.kD/ 	 �kD . We easily derive from (9.50)
that

kD 	
� h"i
�3

�1=4
(9.51)

With the wavenumber kD , one usually associates the scale D̀ D 1=kD called the
dissipation scale or the Kolmogorov scale. This scale separates the spectrum into
two domains: the one where viscosity dominates `  D̀ and the one where this
force may be neglected ` � D̀ .

9.5 Universal Turbulence

After the long foregoing presentation of some kinematic aspects of turbulence, we
shall now get closer to the real difficulties associated with turbulent flows, namely
their dynamics. To get a first idea of it, we follow the work of Andrei Kolmogorov
which was published in 1941. This pioneering work suggested for the first time the
idea of a universal turbulence, which would be independent of the instabilities that
maintain it. This ideal state has been investigated by Kolmogorov and his theory is
often referred to as “K41”, an acronym that we shall also use below.
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9.5.1 Kolmogorov Theory

9.5.1.1 The Hypothesis

The basic idea of Kolmogorov is that there exist a universal state of turbulence that
may be observed when we consider the flow in a box much smaller than the scales
where the instabilities are working. In other words, a box following the mean flow
and much smaller than the integral scale. Within this box, turbulence is characterized
only by h"i according to Kolmogorov who introduced this quantity. Kolmogorov
also suggested that in this box the turbulence is (almost) homogeneous and isotropic
and so that it should meet two hypothesis:

• H1: First similarity hypothesis. The structure functions for the velocity within
an isotropic homogeneous turbulence just depend on h"i and �.

• H2: Second similarity hypothesis. If the distance between the points is large
compared to the dissipation scale, then the structure functions just depend on h"i.

Kolmogorov concentrated on the structure functions because of the a priori idea
that they are less sensitive to a large-scale flow hence to some non homogeneity.

A first consequence of these hypothesis is the existence of scaling laws when the
distances are large compared to the dissipation scale. We shall come back to this
when discussing the idea of intermittency.

9.5.1.2 The Kolmogorov Spectrum

We shall now derive the kinetic energy spectrum E.k/ under Kolmogorov’s second
hypothesis, namely when the effects of viscosity are negligible.

According to H2, E.k/ depends only on k and h"i. We thus need to build a
quantity of the same dimension as E.k/ using k and h"i only. Let us first observe
that h"i is a specific kinetic energy per unit time. Thus, if we use the velocity vk
typical of the scale 1=k, dimensionally speaking

h"i 	 kv3k

However, still dimensionally, v2k 	 kE.k/. Combining these two expressions, we
find that

E.k/ D h"i2=3k�5=3f .h"i; k/

where f is dimensionless. Moreover, the argument of f must be dimensionless too.
But there isn’t any combination of k and h"i that is dimensionless. Therefore f is
a constant CK which is called the Kolmogorov constant. Scientists have tried very
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hard to determine the value of this constant, but this is a difficult task. Its value3

seems to be close to 1.6.
Finally, the spectrum reads:

E.k/ D CKh"i2=3k�5=3 (9.52)

This is commonly called the Kolmogorov spectrum, even if its expression has first
been given by Obukhov. The foregoing analysis is valid only for some range of
scales: this range is known as the inertial range. These scales are much smaller
than the integral scale but much larger than the dissipation one. The name “inertial
range” comes from the idea that only inertial terms, like .v �r/v, and pressure terms
are important in the dynamics of these scales.

The foregoing approach leads to a new view of turbulence through the evolution
of the energy. Let us first observe that within the inertial range the kinetic energy
is conserved: indeed, if we imagine a volume of fluid which would not exchange
any mass with its surroundings and whose motion would be due to Fourier modes
within the inertial range, for these modes viscous action is negligible and therefore
the kinetic energy remains constant. On the contrary, the energy of modes with
k > kD is rapidly transformed into heat by viscous friction. In a steady state, such a
loss must be compensated. The energy is provided by the scales of the inertial range,
however there is no energy source there. Thus, we must consider still larger scales,
namely those where the forces driving the turbulence are working. These scales are
generally in the domain k � k0, also called the injection range.

Hence, the picture of the turbulent cascade is emerging: Energy injected in the
large scales by the instabilities leading to the turbulent flow, is progressively carried
through smaller and smaller scales until it reaches the dissipative range where it
is transformed into heat. The physical picture behind this spectral dynamics is the
repeated breaking of vortices. When the size of these structures is small enough,
they are removed by viscosity. In Fig. 9.2 we show the kinetic energy spectrum in
an ideal view and using real data. In Fig. 9.3 we illustrate the cascade process in the
real space.

We should however be careful not to take this picture as an exact view of the
reality. This is, unfortunately, only a partial view of it as we shall see below.

Let us now come back to the various scales that we introduced in 9.4 and let us
plot them in Fig. 9.2a. Calculating the integral scale from (9.47) with the functions
used to plot Fig. 9.2a, gives k0 D 1=`0 	 0:6 which is very close to the maximum
value that we fixed at k D 1. As expected this scale is the one of the most energetic
structures.

3First experimental values as those given by Monin and Yaglom (1975) are around 1.5. Recent
measurements in the atmospheric boundary layer by Cheng et al. (2010) give 1.56. Numerical
experiments have long given values around 2 (e.g. Vincent and Meneguzzi 1991), but recently
it has been understood that the numerical resolution was an important issue. The latest results
obtained with the very high resolution numerical simulations are getting closer to experimental
values (Kaneda et al. 2003).
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a b

Fig. 9.2 (a) Idealized view of the different regions of the kinetic energy spectrum of a turbulent
flow. The dashed line shows the enstrophy spectrum. (b) A kinetic energy spectrum derived from
an experiment on turbulence with Helium. Note that the law !�5=3 is visible on almost two decades
(courtesy H. Willaime)

a b

Fig. 9.3 (a) An illustration of the cascade of energy towards the small scales: vortices split into
smaller and smaller pieces. (b) The vorticity field as computed by a direct numerical simulation of
isotropic turbulence at Re� 1000 from Vincent and Meneguzzi (1991)

Let us now estimate the Taylor scale. We derive its value from (9.49) assuming
that the dissipation scale is much smaller than the integral one, namely kD � k0.
We may show (see the exercises), that the order of magnitude of this scale is

T̀ 	 `
1=3
0 `

2=3
D (9.53)
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The Taylor scale is therefore a kind of geometric mean between the integral and
dissipation scales with more weight to the latter. The wavenumber kT D 1= T̀

is in the middle of the inertial range as shown in Fig. 9.2. This scale therefore
characterizes more specifically the “Universal Turbulence”. The Reynolds number
associated with this scale is usually taken as

Re� D v0 T̀

�
(9.54)

Using (9.53) and h"i 	 v30=`0, we see that Re� D p
Re0 where Re0 is the

Reynolds number associated with the integral scale.

9.5.2 Dynamics in the Spectral Space

The foregoing discussion is essentially qualitative and we may wonder what kind of
constraints are given by the equations of motion as far as the spectral quantities are
concerned. To investigate this point let us write the Navier–Stokes equation and that
of mass conservation in the spectral space. We have

�
@t Ovi C ikjbvivj D �iki Op � �k2Ovi
ki Ovi D 0

(9.55)

where the hat is for the Fourier transform. We then project this equation on the plane
perpendicular to k thanks to the projector tensor Pij (see 9.27). Thus

.@t C �k2/Ovi D �iPijknbvj vn D � i
2
Pijnbvj vn (9.56)

where we set Pijn D Pijkn C Pinkj .
These expressions show that the evolution of the Fourier component Ovi .k/ comes

from the damping by viscosity on a time scale 1=.�k2/ and a forcing from all the
components verifying:

p C q D k; since bvj vn D
Z

Ovj .p/Ovn.k � p/d 3p

D
Z

Ovj .p/Ovn.q/ı.p C q � k/d 3pd3q

These terms reflect a local interaction of Fourier modes when

kpk 	 kqk 	 kkk

and a non-local interaction when

kkk  kpk 	 kqk
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Fig. 9.4 Interactions
between Fourier modes

k

p

q

k

p

q

local non−local

Figure 9.4 illustrates these two types of interactions.
Let us now focus on the evolution of the turbulence spectrum. We start from

(9.56) and use the result of exercise 1. We easily show that

.@t C 2�k2/�ij.k/ı.k � k0/ D i

2

D
Pilmbvlvm

�Ov0
j � P 0

jlmbvlvm
0 Ov�
i

E

Noting that the right-hand side is also proportional to ı.k � k0/, we find

.@t C 2�k2/�ii.k/ D �Im.Pilm
˝
bvlvm

�Ovi
˛
/

which can be rewritten as

.@t C 2�k2/�ii.k/ D �Im

�
Pilm

Z
hOvi .k/Ovl .p/Ovm.q/i ı.k C p C q/dpdq

�

(9.57)

The evolution of the spectral density of kinetic energy in the isotropic case is now
driven by:

.@t C 2�k2/E.k; t/ D T .k; t/ (9.58)

where T .k; t/ is called the transfer term. It comes from the nonlinear terms of
the Navier–Stokes equation: it explicits the energy exchange between three Fourier
modes when the wavenumbers of the triad are compatible (k C p C q D 0).

We may wonder about the physical meaning of the transfer terms. Of course
this is the spectral translation of the nonlinear interactions: more specifically, it
expresses the mechanisms that allow one feature at a given scale to pump energy
from structures at other scales. This mechanism is essentially non-local because it
is intrinsically the result of instabilities. The mechanisms behind T .k; t/ are very
complex: many instabilities, like the ones we analysed in Chap. 6, pump the energy
from the large scales to the small ones. However, in turbulent flows the other way
round is also possible: some large-scale flows may grow using the energy available
in the small scales: this is a large-scale instability. When the turbulence is in a steady
state, the transfer between scales is in both directions: towards the small scales
and towards the large scales. Of course, the transfer to the small scales slightly
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dominates, so that the kinetic energy cascades on average from the large scales to
the small scales with a rate equal to h"i.

9.5.3 The Dynamics in Real Space

9.5.3.1 Kármán–Howarth Equation

Some years before Kolmogorov proposed his new approach of turbulence, von
Kármán and Howarth (1938) derived the first equation controlling the dynamics of
homogeneous isotropic and symmetric turbulence. This equation relates the double
and triple longitudinal correlation f and k. We now derive this equation and for that
purpose we write the Navier–Stokes equation at two independent points:

@vi
@t

C @k.vkvi / D �@ip C ��vi

@v0
j

@t
C @0

k.v
0
kv0
j / D �@0

j p
0 C ��0v0

j

where we simplified the expressions setting v0 D v.x0/ and @0 D @=@x0. We then
multiply the first equation by v0

j and the second by vi . We also note that @j v0
i D

@0
j vk D 0. Summing the results and taking the average we finally get:

@Qij

@t
C @k.

D
viv

0
j v0
k

E
�
D
vivkv0

j

E
/ D @i

D
v0
j p
E

� @j
˝
vip

0˛C 2��Qij

where the space derivatives are taken with respect to r. With the definition of Sijk

we have

@Qij

@t
� @kŒSikj.r/� Sjki.�r/� D 2��Qij C @i hp.x/vj .x C r/i � @j hp.x/vi .x � r/i

Using the antisymmetry of Sijk and taking the trace of the equation we get:

@R

@t
� @k.Siki / D 2��R (9.59)

because R D Qii=2 and because pressure-velocity correlations disappear thanks to
isotropy. However, from (9.45)

Siki D 1

2r4
@.r4k/

@r
rk
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so that

@R

@t
� 1

2r2
@

@r

�
1

r

@.r4k/

@r

�
D 2�

1

r2
@

@r

�
r2
@R

@r

�
(9.60)

If we use longitudinal correlation rather than R, we can make the substitution

R D 1

2r2
@r3f

@r
; (9.61)

Then the equation may be integrated and finally we get:

@f

@t
� 1

r4
@r4k

@r
D 2�

�
@2f

@r2
C 4

r

@f

@r

�
(9.62)

which is the equation of Kármán–Howarth.
When it is used at r D 0 this equation yields some additional informations.

Indeed, we know that f .0/ D ˝
v2l
˛ D 1

3

˝
v2
˛ D 2

3
Ec . However, at r D 0 (9.62)

becomes

df .0/

dt
D 2�

�
1

r4
@

@r
r4
@f

@r

�
rD0

(9.63)

which leads to

dEc
dt

D 15�f 00.0/

The right-hand side represents the energy dissipation by viscosity, thus �h"i by
definition. Hence, we find that h"i D �15�f 00.0/, but also that, using (9.36),

h"i D 2�Z D �
˝
!2
˛

(9.64)

meaning that h"i is directly proportional to enstrophy.
This latter equation gives a new interpretation of the Taylor scale. Indeed, we

have:

dEc
dt

D �h"i D � �

`2
T

Ec

namely that the kinetic energy decreases on a time scale � D `2
T
=�. Thus, it is just

like if turbulence was damped by viscosity but on an effective length-scale equal to
the Taylor scale.
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9.5.3.2 The Kolmogorov Equation

Kolmogorov manipulated furthermore Kármán–Howarth equation using the struc-
ture functions with longitudinal velocities, namely

S2 D ˝
.v`.x C r/ � v`.x//2

˛
and S3 D ˝

.v`.x C r/ � v`.x//3
˛

These structure functions are easily expressed with f and k; indeed,

S2 D 2.f .0/� f .r// and S3 D 6k.r/

If the turbulence is in a steady state, the viscous dissipation must be compensated
by an energy source, the power of which is h"i. In freely decaying turbulence,

dEc
dt

D �h"i; while f .0/ D 2

3
Ec

so that df .0/=dt D � 2
3
h"i. In a steady state, this loss is compensated by the same

term with opposite sign. Hence,

df .0/

dt
D 2�

�
1

r4
@

@r
r4
@f

@r

�
rD0

C 2

3
h"i D 0

Since h"i is a constant, we should find this term also in (9.62). The steady state
version of the Karman–Howarth equation (9.62), is therefore:

� 1

r4
@r4k

@r
D 2�

�
@2f

@r2
C 4

r

@f

@r

�
C 2

3
h"i

After simple integrations and use of the structure functions instead of f and k, we
find

4h"i C 1

2r4
@.r4S3/

@r
D 6�

�
@2S2

@r2
C 4

r

@S2

@r

�

which can be integrated after multiplication by r4. We obtain

4

5
h"ir C S3 D 6�

@S2

@r
(9.65)

which is called the Kolmogorov equation This new equation is quite interesting
since it shows that if r � D̀ , namely if we are considering a length scale in the
inertial range, then S3 verifies the scaling law

S3 D �4
5

h"ir (9.66)
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called the “four-fifth law”. This is a remarkable result as it is non-trivial and exact
for universal turbulence (but see Frisch 1995, for a more thorough discussion).

The Log-Normal theory of Obukhov-Kolmogorov 1962

When we wrote the scaling laws (9.70) we
only used two quantities: the scale r and the
mean dissipation h"i. This lead us to the law
Sp � rp=3h"ip=3. However, with the same
dimensional arguments we could have written
Sp � rp=3

˝
"p=3

˛
. But the two quantities

h"ip=3 and
˝
"p=3

˛
are not identical (except for

p D 3) because dissipation is a fluctuating
quantity. Landau was the first to point out this
problem with the K41 theory. Hence, some
years later, Obukhov and Kolmogorov (1962)
proposed a modification of the K41 approach.
This new model is now known as the Log-
normal theory. This theory may be presented
as follows.
First, OK62 define a dissipation "r , averaged
over a ball of size r , namely

"r D 1

V

Z
.Vr /

".x/dV

Obviously, h"rip is all the more different
from

˝
"
p
r

˛
that the fluctuations of "r are strong.

However, these fluctuations increase when
the volume decreases. Indeed, let us consider
a flow with a very high Reynolds number.
The velocity gradients may be very strong
implying in some places very high values of
viscous dissipation. Actually, we expect from
the Kolmogorov spectrum that the fluctua-
tions of dissipation are not bounded when the
Reynolds number goes to infinity. OK62 thus
proposed that the variance of the logarithm of
"r is not bounded when L=r goes to infinity
(L is a given large scale). They also assumed
that this quantity obeys to a normal statistics
(the probability density function is a gaus-
sian). One may wonder why they considered
the logarithm of "r ? This is because "r is
a positive quantity which cannot follow a

normal law, while the logarithm symmetrizes
the points 0 and C1 by moving zero to �1.
The normal law is symmetric with respect to
the mean value, hence we may expect that
it applies more precisely to the logarithm.a

OK62 thus proposed this formulation of the
variance, which completely defines, with the
mean, a normal distribution,

�2r D A.x; t/C 
 log.L=r/ (9.67)

where 
 is a supposed universal constant.
Now we may wonder why a logarithm depen-
dence has been chosen for the variance.
Essentially, because power laws are expected
for spectra or moments.b

For a log-normal law, one has

˝
"p=3r

˛ D ep=3hlog "liC

p2�2r
18 (9.68)

if we set p D 3 in this formula and if we use

(9.67), we find h"r i D .L=r/
=2ehlog "liCA=2,
so thatD

"
p=3
r

E

h"rip=3
D Cp.x/

�
L

r

�
p.p�3/=18

:

We can thus derive a new expression for the
exponent �p of the structure functions of order
p:

�p D p

3
� 
p.p � 3/=18 (9.69)

The first experimental measurements of �p ,
obtained for small p’s, gave 
 ' 0:2. Some
years later, Arneodo et al. (1998) have shown
that experimental data (obtained for �10 

p 
 C10) are well represented by a quadratic
normal law with �p D mp � �2p2=2 with
m D 0:32 and �2 D 0:03.

aHowever, this assumption is still approximate because there is no good reason that fluctuations
towards small values are as probable as those towards high values.
bWe should keep in mind that in 1962, the Kolmogorov spectrum had already been observed
experimentally, and thus any new theory should reproduce this result.
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9.5.4 Some Conclusions on Kolmogorov Theory

The foregoing discussion revealed to us some of the important properties of
turbulence which we shall now summarize.

1. We first noticed that scales are important in a turbulent flow: the properties
depend on the scale we are considering. Investigating the spectral side of
turbulence, we could discriminate three different ranges of length scales: the
integral, inertial and dissipative ranges.

2. We then understood that if a turbulent flow is very dependent of the instabilities
at the integral scale, it may well be that within the inertial and dissipative ranges,
turbulence reaches a universal state where (9.66) is certainly one of the first laws.

3. However, Kolmogorov’s approach assumes rather strong hypothesis: homogene-
ity, isotropy, parity. Among the three assumptions, homogeneity is the strongest.
If it is relaxed, there is some mean flow whose evolution is dictated by the
transport properties of turbulence.
These transport properties appear in the closure of averaged equations. We may
have noticed that the Kármán–Howarth equation is not closed.

4. The Kolmogorov scenario “forgets” about the possible role of fluctuations of ",
which points to another side of turbulence, namely intermittency, to be discussed
below.

9.6 Intermittency

9.6.1 Presentation

The intermittency of turbulence, which is sometimes called internal intermittency,
is one of the ill-known sides of turbulence. We shall first present this phenomenon
as it appears in the experiments.

Figure 9.5 shows a random function whose distribution function is gaussian, and
its derivative. It also shows a plot of a record of the velocity of a turbulent flow as
well as its derivative. The difference between these two random functions is quite
clear: while we note that the gaussian random function and its derivative are rather
similar, we see that the velocity and its derivative are quite different. In particular,
the derivative of the velocity shows large amplitude fluctuations. Now, if we plot
the probability density function of the velocity and the random function (Fig. 9.6),
the difference between the gaussian random function and the velocity is even neater.
The large amplitude events in a turbulent velocity field are more likely than if they
were the results of a sum of random, uncorrelated events (which would lead to the
gaussian distribution). We pinpoint here one of the true problem of turbulence: the
phenomenon is really random in nature, but this chance is guided by the Navier–
Stokes equation in a still obscure way.
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Fig. 9.5 On left (top) a random function with a gaussian distribution and its derivative (bottom).
On right (top) the record of a turbulent velocity field and its derivative (bottom)

Fig. 9.6 The probability density function for the velocity difference between two points separated
by a large scale L or by a small scale `; these distributions have been derived using the data shown
in Fig. 9.5. The normal, gaussian, distribution is shown as dashed lines

It is interesting to compare the random world of turbulence and the one of
atoms and molecules within a gas. Indeed, the distribution of velocities of atoms
or molecules of a gas in usual conditions is gaussian. This is a consequence of
the fact that the velocity of a molecule at a given time results from the huge
number of collisions that are statistically independent. Indeed, the central limit
theorem states that the probability density function of a random variable that
is the sum of an infinite number of independent random variable is a gaussian.
Hence, the distribution of molecule velocities follows a normal statistics. We
see that this statistical result is independent of the equation of motion of the
molecules. In a turbulent flow the velocity at a given point is the combination of the
influence of many vortices operating at various scales. In this respect many random
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processes contribute to the build up of the velocity field, but these processes are
not independent: we know that long vortices tend to split thanks to instabilities and
therefore correlations between scales are important.

However, intermittency does not only appear in the probability distributions; it
also influences the scaling laws of structure functions. This is one aspect of the
universal turbulence that we shall discuss now.

9.6.2 The Scaling Laws of Structure Functions

We already met the structure functions. These are important functions for many
reasons: First they measure the relative velocity of two points of the flow: if the
turbulence has a universal regime, such quantities will show it. Experimentally, it is
difficult to create homogeneous and isotropic turbulence. The best approximation to
this ideal situation is certainly grid turbulence,4 which, in a frame comoving with
the mean flow, is quasi-homogeneous and isotropic but is decaying with time. The
structure functions eliminate the mean flow and are measurable quantities.

Using dimensional arguments, the structure function of order p may be written

Sp D h.v`.x C r/� v`.x//pi D Cp.h"ir/p=3 (9.70)

since the velocity scale is .h"ir/1=3. The Cp’s are constants which likely depend on
the flow, except C3 since

C3 D �4
5

from (9.66). We should also note that C2 is related to the Kolmogorov constant, and
one may show, as an exercise, that when S2 is proportional to r2=3 then E.k/ is
proportional to k�5=3.

Let us now focus on variations of Sp with r . Setting

Sp / r�p ; (9.71)

we see that the Kolmogorov theory implies that

�p D p

3
(9.72)

As shown by Fig. 9.7, experiments show a clear deviation to this suite of exponents
with respect to the Kolmogorov one. This deviation is all the more marked that p is

4This is the turbulence which appears in the wake of a grid. It is homogeneous in the directions
parallel to the grid
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Fig. 9.7 The exponents �p from various theories compared to some experimental data. Pluses and
triangles are from a numerical simulation of Vincent and Meneguzzi (1991) and diamonds are from
Benzi et al. (1993). The good fit of the Log-Poisson law (LP) is now understood as an effect of the
small (not large!) value of the Reynolds number at Taylor scale used by the numerical simulation
of Vincent and Meneguzzi (1991). Convergence to the Log-normal law would appear at very much
higher Reynolds numbers. The straight line K41, is from the Kolmogorov theory and the LN curve
shows the log-normal law with 
 D 0:2

high. However, large orders are sensitive to the wings of the probability distribution,
that is to rare events. They are thus sensitive to the large amplitude events typical of
the intermittency. The absence of intermittency in the K41 theory was soon noticed
by Landau. Kolmogorov and Obukhov then proposed a modification of this theory,
which is now known as the Log-Normal Theory (see the box). Unfortunately, this
theory raised new questions and new theories have been developed (see the Log-
Poisson box).

9.6.2.1 Two Properties of the Exponents

The exponents suite �p verifies two general conditions:

d2�p

dp2
� 0 and �2pC2 � �2p (9.73)
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The first one comes from a Schwartz inequality verified by random variables. If A
and B are two random variables, then

hABi � ˝
A2
˛1=2 ˝

B2
˛1=2

taking A D .v`.x C r/� v`.x//p and B D .v`.x C r/� v`.x//q , we get

SpCq � p
S2pS2q

If Sp D Apr
�p , then

ApCqr�pCq � p
A2pA2qr

.�2pC�2q/=2 8r 2 Inertial range (9.74)

The Log-Poisson Theory

Making more precise determinations of the exponents of structure functions has shown that
neither the Kolmogorov theory, nor its Log-normal improvement could explain the variations
of the �’s with the order p. In 1994, She & Lévêque, She & Waymire and Dubrulle proposed
a new approach which seemed to square much better with the experimental results available at
the time (see Fig. 9.7).
This new approach was based on three hypothesis:

i. The structure function of order p verifies the scaling law:

Sp � rp=3
˝
"p=3r

˛

ii. The moments of the pdf of the energy dissipation obey the induction relation:

D
"
pC1
r

E
"1

r

˝
"
p
r

˛ D Ap

0
@

˝
"
p
r

˛
"1

r

D
"
p�1
r

E
1
A
ˇ

; and 0 < ˇ < 1 (9.75)

where Ap are constants and "1

r D limp!1

D
"
pC1
r

E
=
˝
"
p
r

˛
. We shall see that "1

r is

a quantity specific to the most intermittent structures. The relation (9.75) could be a
hidden symmetry of the Navier–Stokes equation.

iii. When r �! 0, "1

r � r�2=3.
If we assume that

˝
"
p
r

˛
verifies the scaling law

˝
"
p
r

˛ � r�p , then, it turns out from the definitions
that �p D p=3 C �p=3. the exponent �p measures the distance to the Kolmogorov law. Using
its definition and the second hypothesis, we find the new relation

�pC2 � .1C ˇ/�pC1 C ˇ�p C 2

3
.1� ˇ/ D 0

It is then convenient to set �p D � 2
3
p C 2C fp . Finally,

fpC2 � fpC1 D ˇ.fpC1 � fp/

which is easily solved as

fp D f0 CA

�
1� ˇp

1� ˇ

�
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The initial conditions of this suite are given by the initial conditions on �p. By construction
�1 D 0 and we assume that �0 D 0. This latter conditions is equivalent to the assumption that
the volume of dissipative structures remains finite as viscosity tends to zero. We finally find

�p D p

3
C 2

3

�
1� ˇp=3

1� ˇ
� p

3

�
(9.76)

The curve which fits the experimental data so well is obtained for ˇ D 2=3.a What is the
meaning of this new exponent? Obviously, it characterizes the degree of intermittency of
viscous dissipation. If ˇ ! 1 then � ! p=3: we find K41 again.

Dubrulle (1994) has shown that the second hypothesis (ii) could be inferred if the pdf of "r="1

r

was assumed to be the convolution of a Log-Poisson law with another undetermined law.

The hidden symmetry underlying (9.75) is therefore not very stringent. The following work

of Arneodo et al. (1998) has shown that experimental data at very high Reynolds numbers

(Re� >� 2000) contradicted the Log-Poisson theory in favor of the Log-Normal approach. It

seems that the Log-Poisson theory is more appropriate for Re� <� 800, a range of Reynolds

numbers where the Log-Normal theory does not give very good results. Today (2013), it is

believed that the Log-Normal theory applies when Re� ! 1, namely only asymptotically.

aWe saw that the exponent �2 was related to exponent of the energy density spectrum. The
change implied by this new theory compared to the Kolmogorov one is very small: this
exponent is now: � 5

3
� 0:03.

This inequality implies that

• if r � 1 then (9.74) is true only if �pCq � .�2p C �2q/=2, that is to say if the
function �.p/ is concave.5

• if r  1 then (9.74) is true only if �pCq � .�2p C �2q/=2 that is to say if the
function �.p/ is convex.

Experiments readily show that the suite �.p/ is convex and therefore the second
case is the right one. The relevant scale in the inertial domain is such that everywhere
r < 1. We should thus take the integral scale as the unity.

The second condition, which demands that the suite of exponents with the same
parity is non-decreasing was obtained by Frisch (1991). It comes from the fact that
the velocity is bounded. Indeed, if Vmax is that bounding value, then

S2pC2 D ˝
.v`.x C r/� v`.x//2pC2˛ � ˝

.v`.x C r/� v`.x//2p
˛
4V 2

max D 4V 2
maxS2p

H) A2pC2r�2pC2 � 4V 2
maxA2pr

�2p

5A function f is concave, if the following inequality f Œ.xCy/=2� 
 .f .x/Cf .y//=2 is verified.
For a continuous and derivable function, this inequality is equivalent to f 00.x/ 	 0.
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Since this inequality is valid for all r D kx � x0k=`0 � 1, exponents naturally verify

�2pC2 � �2p: (9.77)

9.7 Theories for the Closure of Spectral Equations

Until now, all the dynamical equations of the mean fields have been left “open”.
Those written in the spectral space like (9.57) or those written in the real space like
(9.62). Closing these equations is equivalent to expressing the third order moments
as a function of those of lower order.

Several theoretical approaches have been devised to close the equations in the
spectral space. Here, we shall present the main ideas of these approaches and refer
the reader to the specialized textbooks (Lesieur 1990; Leslie 1973; McComb 1990)
for more details.

9.7.1 The EDQNM Theory

EDQNM means “Eddy-Damped Quasi-Normal Markovian” which means that the
statistics are assumed to be quasi-normal (close to the gaussian laws), Markovian
(there is no memory effect), and Damped (some terms are purposely damped). This
is probably one of the most popular closure in the spectral space. It was elaborated
in the sixties and one of its conceptors, Steven Orszag, has written a masterful
synthesis in the Les Houches Lectures of 1973.

The fundamentals of this approach are the followings: we need to get a closure
of (9.57), which means that we have to relate the third order moments to the second
order ones. However, we know that the evolution of the third order moments depends
on those of the fourth order. At this point, the first hypothesis of quasi-normality
interrupts the chain of equations. It is assumed indeed, that the statistics of the
Fourier components is quasi-normal and hence obey to the Gaussian law. This law
has the property that fourth order moments can be expressed with the second order
ones. Thus, no hypothesis is made on the third order moments.

The quasi-normality hypothesis is simple: we just neglect the cumulants of fourth
order. Unfortunately, this simplification has a disastrous consequence: the kinetic
energy spectrum may become negative! The cure of that is to avoid the complete
neglect of fourth order cumulant and to replace them by a damping term; hence
the Eddy-Damped. This improved very much the theory, but still did not guarantee
the positiveness of the energy. The Markovian constraint was then added, inferring
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that the turbulence has no memory effects.6 One can then show that if the energy
spectrum is positive at one time, then it is positive at all later times.

The EDQNM theory therefore simplifies turbulence on two crucial aspects:

• One assumes that the fourth order cumulants are damping terms for the third
order correlations.

• There is no memory effect in the evolution of the spectral quantities.

This approach is interesting since it allows us to compute the evolution of the
various spectral quantities. Hence, the way the Kolmogorov spectrum forms from
some given initial conditions can be studied (with no intermittency of course!), and
the relative simplicity of the method allows some generalization to more complex
situation like helical turbulence, or turbulence with a background rotation.

9.7.2 The DIA

DIA means “Direct Interaction Approximation”. This is another way of attacking
turbulence theory which was developed by Kraichnan at the beginning of the sixties.
It relies on a rather severe simplification of reality, which is a drawback, but it is self-
consistent. Nevertheless, it allowed the scientists who investigated its consequences,
to understand some important points for the theory of turbulence: for instance, the
fact that the Kolmogorov spectrum is related to the invariance of the theory in
random galilean transform. The book of Leslie (1973) gives a detailed description
of this theory.

9.7.3 The Renormalization Group Approach

To end this short review of the closure theories, we should mention that of the
renormalization group, which was inspired by the technics of statistical physics in
the study of critical phenomena.

Let us assume that we can represent a turbulent flow by a discrete set of Fourier
modes k-bounded from above by k0 which is in the dissipative range (k0 	 kD).

Now we cut the spectral domain in two parts by introducing a wavenumber
k1 slightly smaller than k0 and we consider the fluid motions associated with the
spectral domain k1 < k < k0. Thus we are considering fluid motions at a scale
slightly larger than 1=k0. Since this range is in the dissipative range, we may
linearize Navier–Stokes equation and solve for the evolution of these modes as
a function of those in 0 < k � k1. Now, the evolution of the modes in 0 < k � k1

6Markovian processes are such that the probability of an event does not depend on the history of
the process.
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is also a function (but nonlinear) of those of the band k1 < k < k0; using the formal
expression of the modes k1 < k < k0 as a function of the modes 0 < k � k1, we
can derive an equation where only the mode of the band 0 < k � k1 intervene. Then
the process can be iterated by replacing k1 by a slightly smaller k2. Progressively,
the spectral band of the small scales is eliminated; at each iteration the viscosity
is “renormalized”, since the elimination of a range increases the dissipation of the
remaining range.

The method’s principle is quite simple, but its setting out is extremely difficult.
The reader is referred to the textbook of McComb (1990) for a more thorough
presentation of this approach.

9.8 Inhomogeneous Turbulence

In the foregoing sections we focused on the homogeneous turbulence case. This
allowed us to be more familiar with the numerous concepts and problems that arise
when studying a turbulent flow. Of course, turbulence in real flows is far from
homogeneous and it is time now to make the jump in this new jungle: : :

To fix ideas, we consider the turbulent flow of an incompressible fluid that is in a
statistically steady state. We rewrite the equations of the mean quantities (9.7) and
(9.8):

�@j hvi i
˝
vj
˛C @jRij D �@i hpi C 
� hvi i and @i hvi i D 0

Contrary to the homogeneous case, the Reynolds stress tensor Rij D h�v0
iv

0
j i

is no longer constant. We need to find a way to relate it to the mean flow hvi.
The methods are called closure models on the Reynolds tensor. These models are
said to be at zero, one or two equations, according to the number of equations
that are solved simultaneously with the evolution of the mean velocity. They might
for instance prescribe the evolution of the turbulent kinetic energy or the turbulent
dissipation. We shall also say a word about models using a closure on the second
order moments, where the evolution of all the components of the Reynolds tensor is
computed.

9.8.1 A Short Review of the Closure Models

9.8.1.1 Models with Algebraic Prescriptions: Turbulent Viscosity

Facing the problem of the expression of the Reynolds tensor as a function of hvi,
we may try to adopt the same reasoning that we used to determine the expression of
the viscous stress, assuming that the role of small-scale turbulence is similar to that
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of the molecules of a Newtonian gas. Small scale turbulence is therefore assumed
to diffuse momentum, heat, etc. Thus we write

�Rij D �pturbıij C ��turb.@i
˝
vj
˛C @j hvii/ (9.78)

This simple closure is due to Joseph Boussinesq who introduced the idea of a turbu-
lent viscosity as soon as 1877. In the foregoing expression, the turbulent pressure,
pturb can be determined after the velocity field when the fluid is incompressible.
Thus, in this case, the crucial part of the model is the “viscous” shape of the tensor
and the expression of the viscosity. We shall present two methods which are rather
popular for the determination of the turbulent viscosity: the mixing-length theory
which was devised by Prandtl, and the Smagorinsky approach devised in 1963.

Prandtl proposed (Prandtl 1925) that turbulent viscosity be the result of momen-
tum transport by fluid elements with a velocity typical of the turbulent fluctuations.
Namely, the fluid motion of velocity

phv02i at a scale `M , the mixing length, are the
engine of the turbulent diffusion. When the fluid elements have run this length, they
vanish, releasing the quantities they carry. Of course this mixing-length is unknown
and should be evaluated for every problem.

For a plane-parallel shear flow, Prandtl proposed that
phv02i D `M

ˇ̌̌
dhvxi
dy

ˇ̌̌
so

that �T D `2M

ˇ̌
ˇ dhvxi
dy

ˇ̌
ˇ. This kind of approximation is unfortunately not general since

the turbulent viscosity vanishes where the mean velocity gradient vanishes. This is
obviously not the case for a turbulent jet: on its axis turbulent diffusion is certainly
not vanishing. However, this assumption leads to very acceptable results as far as
wall-turbulence is concerned.

Using the same concept, Smagorinsky (1963) proposed to model turbulent
viscosity by a formula like

�T D �2
q˝
cij
˛ ˝
cij
˛

where� is a length scale to be precised. We may note the similarity with the Prandtl
approach. However, the idea of Smagorinsky is less ambitious: This expression
is not meant to be used to determined a mean flow, but just to represent sub-
grid motions in a numerical simulation. Indeed, in numerical simulations of a
turbulent flow, the small scales are generally not computed because of the implied
computational cost. At the grid scale the Reynolds number is still large, and the
effects of the dismissed scales have to be modeled, namely replaced by something.
This is the role of subgrid models. The Smagorinsky model is one such models.
Therefore, the length scale � is taken as the smallest resolved length (usually the
mesh size).7

7Let us mention that usually subgrid scale models are not categorized in models of turbulence
since they give a local prescription that can be used only in numerical simulation. However, their
similarity with the mean-field approach is strong enough that we discuss them here.
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9.8.1.2 The K-" Model: A Model with Two Equations

We shall leave aside the models using just one additional equation (like the ones
of turbulent kinetic energy), which are no longer used, and focus on one using two
equations like the celebrated K-" model.

The K-" model was proposed by Launder and Spalding (1972). The assumption
is that the Reynolds tensor is a function of both the large scale shear

˝
cij
˛ D @i

˝
vj
˛C

@j hvi i and the local strength of turbulence characterized by the turbulent kinetic
energyK and the viscous dissipation " (both taken per unit mass). This dependence
is similar as (9.78), namely

�
D
v0
iv

0
j

E
D �2

3
Kıij C �T

�
@i
˝
vj
˛C @j hvi i

�
(9.79)

where �T D c�K
2=". This expression reveals the assumptions of this model: first

the turbulent pressure depends only on the turbulent kinetic energy and is equal to
2
3
K while the turbulent viscosity is determined by both the kinetic energy and thus

the viscous dissipation. c� is a dimensionless coefficient which is calibrated with
experiments (one usually takes c� 	 0:09).

In such a model, the turbulent kinetic energy and the turbulent dissipation play
a crucial role but need to be determined. The K-" model proposes to compute them
using equations that model their evolution. Hence, we write:

8<
:

@K
@t

C hvi � rK D �"C �T
2

˝
cij
˛ ˝
cij
˛C r � .�TrK/

@"
@t

C hvi � r" D �c2"2=K C c1K
2

˝
cij
˛ ˝
cij
˛C r � .�"r"/

(9.80)

These equations come from the ones verified by the velocity fluctuations. Third
order correlations or velocity-pressure correlations are then approximated to close
the system.

The equation of velocity fluctuations is derived by combining (9.5) and (9.7):

@v0
i

@t
C ˝

vj
˛
@j v0

i C v0
j @j hvii C v0

j @j v0
i �

D
v0
j @j v0

i

E
D �1

�
@iP

0 C �@j @j v0
i (9.81)

Taking the dot product with v0
i and averaging, we find the equation governing the

evolution of K:

@K

@t
C ˝

vj
˛
@jK C rij@j hvi i C

I‚ …„ ƒD
v0
iv

0
j @j v0

i

E
D �@i

II‚…„ƒ˝
P 0v0

i

˛C�
III‚ …„ ƒ˝

v0
i�v0

i

˛
(9.82)

where rij D Rij=�. In this equation, the three terms (I), (II) and (III) need to be

modeled. The first of them can be rewritten
D
v0
j @j v02=2

E
: this is the advection of

kinetic energy by the fluctuations of the velocity. Following an analogy with a purely
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diffusive process, the K-" model assumes that this term can be represented by a
turbulent diffusion, namely:

D
v0
j @j v02=2

E
D �r � .�TrK/

where the turbulent viscosity �T remains to be determined. If the turbulence is locally
isotropic, we may neglect the correlations with pressure:

˝
P 0v0

i

˛ 	 0. Similarly,

we can also rewrite �
˝
v0
i�v0

i

˛ D @j

D
v0
i �

0
ij

E
� " and, assuming again local isotropy,D

v0
i�

0
ij

E
	 0, we find that the power of the viscous force is just the opposite of the

viscous dissipation, as expected.8 Finally, K verifies the following equation:

@K

@t
C ˝

vj
˛
@jK C rij@j hvii D r � .�TrK/� " (9.83)

Using (9.79), we find again the first equation of (9.80).
The equation governing the evolution of " is much more difficult to derive and

we leave the details of the derivation in an appendix of this chapter. It leads to the
following expression:

@"

@t
C hvki @k"C ˝

cjk
˛ I‚ …„ ƒ˝
�c0

ijc
0
ik

˛C h˝iki
II‚ …„ ƒ˝

�c0
ij˝

0
kj

˛C
III‚…„ƒ˝

�c0
ijv

0
k

˛
@k
˝
cij
˛

C
IV‚ …„ ƒ˝

v0
k@k�c

02
ij =2

˛C2�
V‚ …„ ƒ˝

c0
ij.@j v0

k/.@kv0
i /
˛ D �2�

VI‚ …„ ƒ˝
c0

ij@i@j p
0˛C�2

VII‚ …„ ƒ˝
c0

ij�c
0
ij

˛

The seven numbered terms need a model. A first simplification is to assume that
the turbulence is locally homogeneous, isotropic and parity invariant. This latter
property with homogeneity eliminates (III) while isotropy zeroes terms (II) and
(VI).9 Hence, terms (I), (IV), (V) and (VII) need a more detailed model.

Term (I) is a second order tensor. It may be related to the large-scale shear
˝
cjk
˛
;

making a Taylor expansion for weak shears (just like we did when dealing with
Newtonian fluids), we get

˝
cjk
˛ ˝
�c0

ijc
0
ik

˛ 	 �c1K
˝
cjk
˛2

where c1 is a dimensionless constant. The turbulent kinetic energy is the quantity
which characterizes turbulence.10

8We noted that � 0

ij D �.@j v0

i C @i v
0

j /.
9See appendix for the demonstration.
10Indeed, the local properties of turbulence can only be, with this model, characterized by the two
scalars K and ". In the present case K is the only one dimensionly correct.
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The fourth term (IV) is modeled is a similar way as the first term (I) of the K-
equation, namely with a turbulent diffusion. We thus write

˝
v0
k@k�c

02
ij =2

˛ 	 �r � .�"r"/

where �" is a new turbulent diffusion, but for dissipation.
Finally, we are left with terms (V) and (VII). These two terms are slightly

special since they are the only ones to remain in an isotropic homogeneous steady
turbulence. In this latter case they compensate exactly. Hence, it is not necessary to
separate their modelling, since their difference is the only important quantity. In the
K-" model these two terms are proportional to h"i2=K , namely

V � VII 	 c2
"2

K

Finally, these equations need to be completed by the expression of the turbulent
diffusions �T and �". Their expression is obtained from the only scalar that has the
same dimension as a diffusivity. This leads to the expressions

�T 	 c�
K2

"
and �" 	 c"

K2

"

As before, the non-dimensional coefficients are calibrated with experiments and
usually the following values are adopted:

c� D 0:09; c" D 0:07; c1 D 0:126; c2 D 1:92

The K-" model tries to establish a relation between inhomogeneous turbulence
and universal turbulence by assuming that, locally, the fluctuations of the mean flow
are universal. Moreover, this local turbulence is assumed to behave like a Newtonian
fluid with a variable viscosity.

These hypothesis are obviously very strong and one may wonder whether the
turbulent fluid can behave as a Newtonian fluid even with a variable viscosity.
This would mean a separation of scales that is not observed, even approxi-
mately. The local homogeneity also implicitly assumes a separation of the spatial
scales.

In addition to these questions about the physical validity of the model, some
other problems on the internal consistency of the model arise. For instance, the
model allows a computation of the kinetic energy and viscous dissipation. These two
quantities are positive and their evolution should preserve this positivity. Presently,
there is no general proof that this is indeed the case. A few demonstrations, applying
to some restricted cases and showing that this is true, may reassure us.
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9.8.1.3 Second Order Closure Models

As we mentioned it previously, a two-equations model like the K-" one implies
a very restrictive form to the Reynolds tensor. It is assumed to be like that of
a Newtonian fluid even if its viscosity is not locally determined. However, the
turbulent fluid has no reason to be isotropic, and anisotropy is likely not a local
function as well. It may result from the past time evolution of a fluid element
(memory effect) or from distant interactions like those coming through the pressure.
It therefore seems simpler, if we wish to get a more realistic description, to directly
compute the evolution of Rij, through equations like:

DRij

Dt
D � � �

These equations of course introduce the third order correlations, which need a new
modeling. Even if this modelling is coarse, it is hoped that it will give realistic
values of theRij, just like the turbulent viscosity model is able to give realistic mean
flows in some cases. Hence, if the Rij are better, the mean flow may be much better.
Comparison of the results of these models with experiments seem to comfort this
hope.

9.8.2 Examples: Turbulent Jets and Turbulent Plumes

We end this section with the analysis of two very common turbulent flows: those of
jets and plumes. As shown in Fig. 9.8, these flows have a conical shape outside of

Z

transition zone turbulent zone

Entrainment

Fictive source

Fig. 9.8 A schematic view of a turbulent jet. The transition zone is the region where the shear
instabilities give birth to the turbulence
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which the turbulence is very low or absent. We shall see that this property, comes
from the self-similarity of the solutions. Self-similarity is likely deeply rooted in
turbulent flows.

Jets, plumes and wakes are often called free shear flows. Indeed, turbulence
results from an imposed strong shear, actually a shear layer, which is, as we saw
in Chap. 6, very unstable. The development of turbulence entrains the outer fluid
inside the jet and the jet broadens as it progresses.

Let us assume that the fluid flow is self-similar, so that we may write the velocity
field as:

� hvri D V.z/g.r=b.z//
hvzi D V.z/f .r=b.z//

(9.84)

where we additionally assumed the jet axial symmetry. The dependence of the
solutions with respect to � D r=b.z/, insures the similarity of the velocity profiles
for all z. This profile has always the same shape, given by f .�/ for vz, but its real
width varies with the distance to the source z. Let us now assume incompressibility
so that mass conservation implies:

@ hvri
@r

C hvri
r

C @ hvzi
@z

D 0 ” 1

�

d.�g/

d�
�b0.z/�f 0.�/C V 0.z/b.z/

V .z/
f .�/ D 0

where the prime indicates a derivative. The existence of solutions like (9.84) implies
that the variables can be separated. This implies that b0.z/ and B D V 0.z/b.z/=V .z/
are constant. This means that the width of the jet grows linearly. Then, noting that
V 0.z/=V .z/ / 1=z (taking the origin of z where b is zero), then V.z/ varies like z˛ .

We need the equation of dynamics to infer ˛. Neglecting viscous effects, the
steady mean flow verifies:

1

r

@r hvri hvzi
@r

C @ hvzi2
@z

D �1
r

@r
˝
v0
rv

0
z

˛
@r

�

I‚ …„ ƒ
@
˝
v02

z

˛C hP i
@z

The term (I) is usually neglected in this type of flow. It is indeed a pressure gradient
which is usually small: this comes from the fact that the ambient pressure where the
jet develops is constant. Indeed, the pressure is almost constant in a section of the
jet, because the mean streamlines are straight lines (recall the results of Chap. 3).
Then this equation may be rewritten to show explicitely the flux of momentum;
integrating over r , we find

d

dz

Z 1

0

b.z/2V .z/2f .�/2�d� C Œr hvri hvzi C r
˝
v0
rv

0
z

˛
�10 D 0

The second term is zero since vz vanishes at infinity and rvr is finite (see below). The
correlation term is zero outside the turbulent zone. Finally, this equation shows that
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b.z/2V .z/2 D P2 where P2 is a constant (the momentum flux), which characterizes
the jet. Consequently, it turns out that the jet mean velocity decreases as 1=z and
that B D �b0.

Now, we apply the same treatment to the mass conservation equation. We find
that

lim
r!1 r hvri D �

�Z 1

0

f .�/�d�

�
dŒb2V .z/�

dz
D �V.z/b.z/ b0

Z 1

0

f .�/�d�

„ ƒ‚ …
˛j

This expression shows that the radial velocity is proportional to the axial velocity
V.z/ and to ˛j which is called the entrainment constant.

The expression of ˛j shows that it depends on the velocity profile f .�/ and
on the aperture angle of the cone b0. In fact these two quantities are themselves
dependent on the closure relations or the transport properties of turbulence. Many
models have been proposed to explain the velocity profile of a turbulent jet, but
none is completely satisfactory. Experiments show that in general the profile is a
Gaussian. Thus, taking f .�/ D expf��2g is a good approximation. Measurements
then give ˛j D 0:054 for the entrainment constant of jets. As an exercise, we may
show that the entrainment constant and the aperture cone angle are functions of the
velocity profile.

The self-similar turbulent jet with a gaussian profile thus obeys two simple
equations:

8̂̂
ˆ̂<
ˆ̂̂̂
:

dŒb2V .z/�

dz
D 2˛j b.z/V .z/

d Œb.z/2V .z/2�

dz
D 0

(9.85)

which translate respectively the conservation of mass and momentum. Their
solution is obviously given by the proceeding laws: b.z/ D 2˛z and V.z/ D P=2˛z.
We note that the initial mass flux does not play any role in the solution. Actually, a
short analysis of the solutions shows that the initial conditions are rapidly forgotten
by the solution which quite quickly reaches the self-similar regime. In the final
steady state the initial mass flux is a very small part of the actual mass flux, which
has grown through entrainment of the surrounding fluid. The jet thus appears as
generated by a pure source of momentum.

Let us now examine the case of a turbulent plume. The most common example is
the smoke plume that raises over a chimney. The hot fluid raises in the atmosphere
thanks to buoyancy which smoke particles render visible as a turbulent mixed flow.

The behaviour of the plume is very similar to that of the jet, but in this case, this is
the initial enthalpy flux which controls the dynamics of the plume. Indeed, similarly
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as above, the initial mass flux and the initial momentum flux are forgotten by the
flow. The initial mass flux disappears because of entrainment as in the turbulent jet,
and the initial momentum flux also disappears because of the work of buoyancy
that add new momentum to the flow. Thus the plume is made by a pure source of
enthalpy.

Experiments show that the velocity profiles in plumes are close to those of jets.
In addition to the mean velocity field, the plume is characterized by an “enthalpy
jump” field ıh, which measures the difference of enthalpy within the plume and
outside the plume. As for the jets, self-similar solutions also exist and verify:

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

dŒb2V �

dz
D 2˛pbV

dŒb2V 2�

dz
D 2gb2��

dŒb2��V �

dz
D 0

(9.86)

We derived these equations using the Boussinesq approximation and orienting the
z-axis along the gravity field g. We also note that another entrainment constant has
been used because experiments say that ˛p D 0:083, which is different from the jet
(why?).

The solutions of (9.86) are naturally power laws in z as prescribed by self-
similarity. We easily find that:

b.z/ D 6˛p

5
z; V .z/ D

 
25gFb

24˛2p

!1=3
z�1=3

�� D 5

6

 
5F 2

b

9˛4pg

!1=3
z�5=3 (9.87)

where b2��V D Fb is the buoyancy flux. We also note that the aperture angle of
the plume is quite similar to that of the jet, namely 	 0:1 while the entrainment
constant is somewhat different. This difference is certainly related to the transport
of momentum and the active scalar ıh.

9.9 Two-Dimensional Turbulence

Two-dimensional turbulence is quite different from its three-dimensional counter-
part. Despite the strong approximation that is made (our world is three dimen-
sional!), the turbulent flows in two dimensions deserve being studied because they
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enlight us on the dynamics of the Earth’s atmosphere or oceans. Indeed, the fluid
flows in these two thin layers of the Earth are almost two dimensional as soon
as the scales considered largely exceeds the thickness of the layer (10 km for the
atmosphere and 5 km for the oceans).

Two dimensionality implies new conservations law which strongly modify the
dynamics, in particular when we consider the evolution of vorticity. Equation (3.41)
indeed says that:

Df .!/

Dt
D f 0.!/

D!

Dt
D 0 ”

Z
.S/

f .!/dS D Cst

where S is a surface advected by the fluid. The main consequence of this peculiarity
is that the picture of the turbulent cascade is completely modified.

9.9.1 Spectra and Second Order Correlations

As in three dimensions, it is interesting to examine the properties of the homoge-
neous and isotropic turbulence.

The tensors Q and � have the same definition, but just four components. If we
observe that in two dimensions there is no helicity (vorticity being orthogonal to
velocity), then following the same steps as when deriving (9.17), we find:

Qij D .rf /0ıij � f 0.r/ri rj =r (9.88)

where f .r/ is the longitudinal correlation. Similarly, as for (9.27), we find:

�ij D e.k/Pij D E.k/

�k
Pij (9.89)

using expression (9.92) below. Indeed, we still have

Eturb D 1

2

˝
v2
˛ D

Z C1

0

E.k/dk (9.90)

which we relate to �ij by

Eturb D 1

2
Qii.0/ D 1

2

Z
�ii.k/dSk D 1

2

Z C1

0

kdk
Z
.2�/

�ii.k/d�k

H) E.k/ D 1

2
k

Z 2�

0

�ii.k/d�k : (9.91)
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In the isotropic case

E.k/ D �k�ii.k/ (9.92)

The functionR.r/, defined as half the trace of ŒQ�, now reads,

R.r/ D 1

2
Qii.r/ D 1

2

Z
�ii.k/e

ik�rdSk D 1

2

Z
�ii.k/e

ikr cos �kdkd�

The integration over the angular variable can easily be realized if we use the general
expression of the zeroth order Bessel function, namely

J0.z/ D 1

�

Z �

0

cos.z cos �/d� :

Thus, we find

R.r/ D
Z 1

0

E.k/J0.kr/dk (9.93)

Conversely

�ii.k/ D 1

.2�/2

Z
Qii.r/e�ik�rd2r D 1

�

Z C1

0

rR.r/J0.kr/dr

gives the expression of the spectrum

E.k/ D
Z C1

0

krJ0.kr/R.r/dr (9.94)

As in the three-dimensional case, this expression allows us to derive the behaviour
of the spectrum at the very large scales. In this case

E.k/ 	 k

Z C1

0

rR.r/dr as k ! 0

showing that the spectral kinetic energy density grows like k.

9.9.2 Enstrophy Conservation and the Inverse Cascade

In order to understand the implication of enstrophy conservation on the spectral
properties of two-dimensional turbulence, it is convenient to consider a set-up where
there would be only three Fourier modes of wavenumbers k1 < k2 < k3, and
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energyE1;E2;E3. The modes are assumed to be in nonlinear interactions, in a one-
dimensional flow. Hence, we set k3 D k1Ck2. Neglecting furthermore the effects of
viscosity, energy and enstrophy of this system are constant. Thus energy variations
must meet:

ıE1 C ıE2 C ıE3 D 0

k21ıE1 C k22ıE2 C k23ıE3 D 0

from which we easily find

ıE1 D �k
2
3 � k22
k23 � k21

ıE2 and ıE3 D �k
2
2 � k21
k23 � k21

ıE2

Now let us suppose that the energy of the intermediate mode of wavenumber k2
decreases. Then energy of the two others increases, namely ıE2 < 0 H) ıE1 > 0

and ıE3 > 0. If the modes are now spectrally close, for instance if k2 D �k1 and
� < 1 C p

3, then ıE1 > ıE3. This means that in this case the energy of the
second mode is preferentially transferred to the first mode. This illustrate the case
of an inverse cascade of energy. Enstrophy conservation together with nonlinear
interactions tends to transfer energy towards the larger scales. On the other hand
we may observe that simultaneously, enstrophy would rather tend to cascade to the
small scales for, generally, ıZ3 D k23ıE3 > ıZ1 D k21ıE1.

Let us now focus on the shape of the spectra. The evolution of kinetic energy is
guided by

dEturb

dt
D d

dt

Z C1

0

E.k; t/dk D �2�
Z C1

0

k2E.k; t/dk

D � 2�

Z C1

0

Z.k; t/dk D �".t/

while enstrophy follows

dZ

dt
D d

dt

Z C1

0

Z.k; t/dk D �2�
Z C1

0

k2Z.k; t/dk

D � 2�
Z C1

0

k4E.k; t/dk D ��.t/

This equation shows that enstrophy can only decrease, and thus remain bounded
from above by its initial value. However if

R C1
0

Z.k; t/dk is bounded, this implies
that " ! 0 when � ! 0. This means that " cannot be used to determine the kinetic
energy spectrum in the inertial range in two dimensions. We are left with �.t/,
namely the dissipation rate of enstrophy. Assuming that it is the quantity which
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controls the two-dimensional turbulence, then, using similar arguments as in three-
dimensions, we find that

E.k; t/ / �.t/2=3k�3 (9.95)

The major consequence of this power law, is that the dissipation of kinetic energy
k2E / k�1 occurs in the large scales. Enstrophy dissipation, on the contrary, occurs
in the small scales (k2Z / k).

Two-dimensional turbulence gives us a scenario that is quite different from its
three-dimensional counterpart. Energy tends to accumulate in the large scale while
enstrophy tends to be extracted by the small scales.

Numerical simulations have shown quite clearly what was going on in the
physical space: vortices with similar vorticity (i.e. cyclonic or anti-cyclonic) tend
to merge and form larger structures, signing the inverse cascade, while enstrophy,
which is conserved by any fluid element, faces a filamentation producing smaller
and smaller scales which are in the end erased by viscosity.

9.9.3 Turbulence with Rotation or Stratification

The shape of the container is not the only way to impose two-dimensionality to
a flow. In Chap. 8, we saw that rotation, through the Coriolis acceleration could
make a flow two-dimensional. In fact, two phenomena may also impose some two-
dimensional dynamics to turbulence, i.e. a background rotation or a stable density
stratification.

These two physical constraints can make a flow two-dimensional when the
time-scale of the motion is much larger than those imposed either by rotation or
stratification. Comparing time scales leads to the determination of the scale at which
the effects of rotation or stratification start to be noticeable.

The turn-over time at a scale ` is �` D `=v` but in Kolmogorov inertial range
v` D .`"/1=3, thus �` D `2=3"�1=3. This leads to the scale `t where the transition
between three-dimensional and two-dimensional motions occurs:

`t D "1=2˝�3=2 or `t D "1=2N�3=2 (9.96)

for respectively the rotating and stratified cases. For stably stratified fluids, `t is also
known as Ozmidov scale.
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9.10 Some Conclusions on Turbulence

To conclude this rather long chapter, I would like to present to the reader some ideas
in order to better appreciate the way we are from a solution to the problems that we
crossed in the course of this chapter.

The models such as the K-" one, try to make a parallel between the “turbulent
fluid” and a real fluid. Like the real fluid, the turbulent fluid would have a “pressure”,
a viscosity, etc. However, if such a way of doing is relevant, the first step is to
describe correctly the equilibrium state, namely the “thermodynamics” of such a
material. Such a step is still not accomplished although attempts have flourished in
the literature (see Castaing 1989, 1996; Chorin 1991, for instance). However, let us
admit that we succeeded. The next step is to derive the transport coefficients of the
turbulence. As we did for the Newtonian fluid, one should analyse the response of
the turbulence to weak perturbations. However, this is a formidable task. Indeed,
unlike a standard fluid, which own just a single (very small) scale (the mean-free
path, see Chap. 11), the turbulent fluid owns a very large number of scales that
strongly interact. Pushing this idea to its end, we see that the turbulent fluid should
be compared to some non-Newtonian fluid with and extremely complex, non-local,
rheological law.

Presently, we may hope that the situation be not so dramatic and that among
all the scales which intervene, just a small number are truly important, the others
following the firsts. This possibility is not so unrealistic since in many cases,
turbulent flows tend to self-similar situations, emphasizing scale invariance.

9.11 Exercises

1. a) Show that

˝Ov�
i .k/Ovj .k0/

˛ D �ij.k/ı.k � k0/

where Ov represents the Fourier transform of the velocity fluctuations and ı is
Dirac distribution.

b) Show the following equality:

Zij D .2�/�3
Z D

!0
i .x/!

0
j .x

0/
E
e�ik�rd3r D �ilm�jnpklkn�mp.k/

and then, that this expression leads to (9.28).
c) Show the reciprocal relation of (9.35), namely

E.k/ D 2

�

Z 1

0

kr sin kr R.r/dr
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2. Following a similar way as in Sect. 9.4.1, show that the correlation length of the
vorticity may be written as

`z D �

2

R1
0 kE.k/dkR1
0
k2E.k/dk

Show that `z is also the dissipation scale D̀ .
3. Let us consider the relation linking the energy spectrum E.k/ and the scaling

law of the structure function S2.

a) From (9.35) and (9.61) show that the two-point correlation of the longitudinal
components of the velocity f verifies

f .r/ D 2

Z 1

0

sin kr � kr cos kr

.kr/3
E.k/dk (9.97)

b) Retrieve that f .0/ D 2
3
Eturb and derive that

S2.r/ D 4

Z 1

0

�
1

3
� sin kr � kr cos kr

.kr/3

�
E.k/dk (9.98)

c) Show that if E.k/ D CKh"i2=3k�5=3 then S2 D C2h"i2=3r2=3 and that C2 and
CK are proportional.

d) Using (9.76), find the difference between the She & Leveque exponent and
the Kolmogorov exponent of the energy spectrum.

4. We assume that the energy spectrum of some turbulence is such that:

8<
:
E.k/ D i.k/ k � k0
E.k/ D k�5=3 k0 � k � kD
E.k/ D d.k/ k � kD

(9.99)

and that functions i and d verify:

i.k/ � k
�5=3
0

d.k/ � kD
�5=3e�.k�kD/=kD

Show that in these conditions, if kD � k0, then

r
8

69
.`0`

2
D
/1=3 <	 T̀

<	
2
p
5

3
.`0`

2
D
/1=3 (9.100)

derive (9.53).
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5. If the distribution of the logarithm of x obey to a normal law, show that

hxpi D ephln xiCp2�2=2

where �2 is the variance of the distribution. The first step is to show that if y is a
random variable with a normal distribution and zero mean, then

1

�
p
2�

Z C1

�1
y2pe�y2=2�2dy D .2p � 1/ŠŠ �2s

where .2p � 1/ŠŠ D 1 � 3 � 5 � 7 � : : : � .2p � 1/.
6. Turbulent jet.

a) If we measure in Fig. 9.9, the half-aperture angle of the turbulent jet visualized
by the water vapour (or rather the droplets of the condensing vapour), we find
a value around 0.15 rd. What can we infer?

b) A ping-pong ball is placed in a turbulent jet directed upwards. Although the
thrust of the jet is maximum on its axis we observe that the ball remains in the

Fig. 9.9 Steam jet at the
outlet of a pressure cooker.
Note the conical shape of the
jet steam
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Fig. 9.10 Ping-pong ball
sustained by an inclined
turbulent air jet

jet, wandering around. We may even incline the jet about 30ı without the ball
fall (see Fig. 9.10). Explain.

Appendix: Complements for the K-" Model

Let us start from the equation of the velocity fluctuations (9.81),

@v0
i

@t
C hvki @kv0

i C v0
k@k hvi i C v0

k@kv0
i � ˝

v0
k@kv0

i

˛ D �@iP 0 C ��v0
i

We rewrite it for v0
j , and write down the one for the fluctuations of the shear, namely

c0
ij D @j v0

i C @iv0
j . We get

@c0

ij

@t
C hvki @kc0

ij C @j hvki @kv0
i C @i hvki @kv0

j

C v0
k@k

˝
cij
˛ C @j v0

k@k hvi i C @iv0
k@k

˝
vj
˛

C v0
k@kc

0
ij C @j v0

k@kv0
i C @iv0

k@kv0
j

� @j @kRik � @i @kRjk D �2@i@jp0 C��c0
ij

(9.101)

Since " D �
2

D
c0

ijc
0
ij

E
, we now contract the foregoing equation with �c0

ij and take the

average. The first two terms can be rewritten as

@"

@t
C hvki @k"
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Then the four terms @j hvki @kv0
i C @i hvki @kv0

j C @j v0
k@k hvii C @iv0

k@k
˝
vj
˛

give

2
D
c0

ij



@j hvki @kv0

i C @i hvki @kv0
j

�E

because c0
ij is symmetric. They are further transformed into

˝
c0

ij˝
0
kj

˛ h˝iki C
D
c0

ijc
0
jk

E
hciki

where we set ˝ij D @ivj � @j vi . Noting that

c0
ijv

0
k@kc

0
ij D v0

k@kc
02
ij =2 and c0

ij



@j v0

k@kv0
i C @iv

0
k@kv0

j

�
D 2c0

ij@j v0
k@kv0

i

Then we get the equation that we were looking for, namely

@"

@t
C hvki @k"C

.I/‚ …„ ƒ˝
�c0

ij˝
0
kj

˛ h˝iki C
D
�c0

ijc
0
jk

E
hciki C

.II/‚…„ƒ˝
�c0

ijv
0
k

˛
@k
˝
cij
˛

C ˝
�v0

k@kc
02
ij =2

˛C 2�
˝
c0

ij@j v0
k@kv0

i

˛ D �2� ˝c0
ij@i @jp

0˛
„ ƒ‚ …

.III/

C�2 ˝c0
ij�c

0
ij

˛

Let us show now that local isotropy removes terms (I) and (III). If ! is the vorticity,
then

˝ij D �ijk!k

thus (I) also reads

�kjl �ikn
˝
�c0

ij!
0
l

˛ h!ni D ˝
c0

ij!
0
i

˛ ˝
!j
˛ � ˝

c0
ii!

0
l

˛ h!l i
incompressibility implies that c0

ii D 0 and isotropy that
D
c0

ij!
0
i

E
D 0.

Term (III) is reshuffled as:

˝
c0

ij@i@j p
0˛ D @i

˝
c0

ij@j p
0˛ � ˝

@i c
0
ij@jp

0˛ D @i
˝
c0

ij@j p
0˛ � @j

˝
@i c

0
ijp

0˛C ˝
.@i@j c

0
ij/p

0˛

Isotropy makes the first two terms zero, while the last one disappears because
r � v0 D 0.

Term (II) can be also eliminated if the turbulence is locally homogeneous and
parity-invariant. In this case, we introduce Cijk.r/ D hc0

ij.x/v
0
k.x C r/i and we show

that like for Sijk (see 9.39) we have Cijk.r/ D �Cijk.�r/ so that Cijk.0/ D 0. Noting
that hc0

ijv
0
ki D Cijk.0/, the result follows.
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Further Reading

There are numerous textbooks devoted to this very rich subject. A recent thorough
review may be found in Davidson (2004). In a slightly more comprehensive
style, we recommend the book of Frisch (1995) Turbulence: the legacy of A. N.
Kolmogorov where the case of intermittency is well discussed. Turbulence in fluids
by Lesieur (1990) presents at length the spectral side of turbulence, while The
physics of fluid turbulence de McComb (1990) is a monograph focusing on the
renormalization group approach (for more acquainted readers). The Les Houches
lectures of Orszag (1973), is still a very good introduction to turbulence and to
EDQNM in particular. Let us also mention some now classical work like the
monograph of Leslie (1973) dealing with the DIA, the two volumes of Monin and
Yaglom, reviewing the knowledge in 1975 or the Turbulence of Hinze (1959,1975)
focused on the engineering approach of turbulence, like Tennekes and Lumley
(1972) or Piquet (2001).
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Chapter 10
Magnetohydrodynamics

Magnetohydrodynamics (MHD for the experts) is often impressive for its complex-
ity. However, it is only the dynamics of electrically conducting fluids. It is indeed
complicated because of a new vector field that enters the game, namely the magnetic
field. The dynamics is different because of a new force: the Laplace force. Since
conducting fluids support electric currents that may generate magnetic fields, we
easily imagine that the evolution of both velocity and magnetic fields may be quite
complex. In this chapter we wish to remain introductive and therefore we shall focus
only on the very basis of magnetohydrodynamics.

10.1 Approximations Leading to Magnetohydrodynamics

Magnetohydrodynamics deals with the motions of a conducting fluid where there is
no free charge. This implies that some approximations are met.

The first one is that the fluid motion is not relativistic, namely that the fluid
velocity is much less than that of light c, i.e.

V=c  1 (10.1)

Two other conditions come from the absence of free charges. If our medium is a
fully ionized plasma made of electrons (of charge �e) and ions (of chargeZe), then
a first condition which should be met by a flow characterized by a length scale L is

L � �D
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where �D is the Debye length. This latter length is the mean distance beyond which
the charge of an ion is screened by electrons. It depends on the temperature T and
the electron density ne of the medium, namely

�D D
s
"0kT

nee2

where "0 is the vacuum permittivity and k Boltzmann constant. Using international
units this length reads �D D 2:8 � 10�12pAT=�Z metres, where A is the mass
number of the ions and � is the mass density. This scale may invalidate the use of
the MHD equations if the fluid is too hot or too dilute.

Charge separation may also occur if the time frequency of the fluid motion is too
large, i.e. larger than the plasma frequency !P . Thus we should also demand that
the time scales of the fluid flow T D L=V verifies

T � !�1
P D

r
me"0

nee2
D 7:2 � 10�16

s
A

�Z
seconds

The two foregoing constraints are important in fluids with very low densities.
A typical example is the solar wind. In this flow the density is very low and a more
refined approach from plasma physics is often needed.

Finally, we shall suppose that the electrical conductivity is isotropic, namely that
Ohm’s law reads

j D �E (10.2)

where j is the current density, � is the electrical conductivity and E is the electric
field. A common source of anisotropy of the electrical conductivity is the magnetic
field which induces cyclotronic motion of the electrons. Here again, dilute plasmas
are more likely to be prone to such anisotropy. Conductivity is indeed much
higher in the direction parallel to the magnetic field than orthogonally to it. In
dense plasma, however, collision frequency is much higher than the cyclotron one
(!cyclo D eB=me). The mean charge motion is thus hardly influenced by the
magnetic field and thus conductivity is a scalar.1

1Let us recall that electrons moving in a magnetic field, without shocks, follow helicoidal
trajectories around field lines. Their rotation frequency is the cyclotron frequency.
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10.2 The Flow Equations

As stated in the introduction the main peculiarity of the dynamics of a conducting
fluid is the action of the Laplace force2

FL D j � B

where B is the local magnetic field. The momentum equation is therefore

�
Dv
Dt

D �rP C 
�v C j � B (10.3)

for an incompressible fluid. Two other equations are needed to complete the
momentum equation: one should give j and the other B. They will be derived from
Maxwell equations and Ohm’s law.

10.2.1 j and B Equations

Let us first recall the Maxwell equations for a medium whose dielectric properties
are similar to those of the vacuum. Hence

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂:

r � E D r � B D 0

@B
@t

D �r � E

r � B D 
0

�
j C "0

@E
@t

�
(10.4)

Following a fluid particle, Ohm’s law reads

j0 D �E0 (10.5)

where j0 and E0 are the current and electric field measured in a frame attached to
the fluid particle. The motion of this fluid element is supposed to be non-relativistic.

2This force is called the Lorentz (1853–1928) force in the Anglo-Saxon world while this is Laplace
force in the French literature. Laplace (1749–1827) actually gave the first analytic expression of the
force that Biot & Savart measured for the action of a magnetic field on a wire carrying an electric
current. It is therefore close to the force that we encounter in MHD. Lorentz force was derived for
the charged particles and leads of course to the same expression for the action of a magnetic fields
on an electrically conducting fluid.
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Thus, the electric field viewed by the particle, E0, is related to the one measured in
the laboratory by

E D E0 � v � B (10.6)

Since the fluid does not contain free charges, j D j0 so that (10.5) now reads

j D �.E C v � B/ (10.7)

Finally, the fourth Maxwell equation can be simplified using (10.1). This
inequality allows us to estimate the order of magnitude of the displacement term
"0
0@E=dt compared to other terms:

"0
0
@E
@t

D 1

c2
@E
@t

	 E

c2T
	 LB

c2T 2
	 V 2

c2
r � B  r � B

where we noted that E 	 VB . The displacement field is therefore very small and
will be neglected. The magnetic field thus verifies:

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:̂

r � B D 0

r � B D 
0j

@B
@t

D �r � E

j D �.E C v � B/

(10.8)

The third equation is called the induction equation. It is usually written without the
electric field, namely as:

@B
@t

D r � .v � B/� r � .�r � B/ (10.9)

where � D 1=.
0�/ is the magnetic diffusivity. This quantity is expressed in m2/s
just as the kinematic viscosity. Thus, a new number arises, namely the magnetic
Prandtl number, which is defined as

Pm D �

�

When � is a constant, the induction equation reads:

@B
@t

D r � .v � B/C ��B (10.10)
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We observe that this is a linear equation for B. Using non-dimensional variables, we
rewrite this equation as

@B
@�

D r � .u � B/C 1

Rem
�B (10.11)

where Rem D VL
�

is the magnetic Reynolds number.

10.2.2 Boundary Conditions on the Magnetic Field

The partial differential equations that we derived for the magnetic field need
to be completed by boundary conditions. Basically, the magnetic field must be
continuous. However, in many situations it is desirable to idealize the medium which
bounds the flow. This is often a way to avoid the computation of the magnetic field
outside the fluid domain. Just like temperature, two ideal cases are used: the perfect
conductor or the perfect insulator.

10.2.2.1 Boundary Conditions at an Electrical Insulator

If the fluid is bounded by an electrical insulator, the current outside the domain is
vanishing, namely j is zero. Hence, outside the fluid domain

r � B D 0 ” B D r˚

Since B is continuous at the surface, B must match a potential field. On the other
hand, no current crosses the boundary so

j � n D 0 ” n � r � B D 0

This equation shows that if the field is continuous, this is not the case for all
its derivatives. The normal component of the curl is the only combination of the
derivatives that is continuous.

10.2.2.2 Boundary Conditions at a Perfect Electrical Conductor

These boundary conditions are definitely more delicate to establish. To be as clear
as possible, we shall consider the case of a fluid meeting a (solid) conductor whose
conductivity will be increased up to infinity. We then focus on the field inside the
wall.
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Let us assume that the magnetic field includes a time-variation like ei!t (this
might just be the Fourier component of a more complex time dependence). In the
solid, we assume that v D 0. Hence, B verifies

i!B D �s�B

where �s is the diffusivity inside the solid. We shall let this quantity vanish. If we
assume the surface separating the fluid and the solid to be the plane z D 0 (solid
z � 0, fluid z < 0), then we might also assume that the variations of B along z are
much faster that along the other directions. In other words, we assume the existence
of a boundary layer. In this layer, B verifies

i!B D �s
@2B
@z2

whose solution is

B D B0.x; y/e�.1Ci /z=ı (10.12)

Here, B0.x; y/ is the field at z D 0 and ı is the boundary layer thickness (the
skin depth in electromagnetism). Let us underline the similarity of (10.12) with
the Ekman layer: the field shows an oscillatory damping (but without changing
direction). The thickness of the layer reads:

ı D
r
2�s

!
D
s

2

!�s
0
(10.13)

The foregoing expression shows that the magnetic field does not penetrate into the
solid if the product !�s goes to infinity.

Now, if we use the flux conservation in the solid, namely that r � B D 0, the
normal component of B may be expressed with the divergence of the tangent field,
i.e.

B0z D .1C i/ırh � B0.x; y/

Again, this equation is very similar to that of the Ekman pumping (8.53). It shows
that when the thickness of the layer goes to zero, this component vanishes. We thus
find that at the boundary of a perfect conductor

B � n D 0 (10.14)

Namely, that the field does not penetrate into a perfect conductor. We may also
observe that in the solid the field is proportional to e�z=ı with ı ! 0. Thus, the
field is zero inside the perfect conductor. However, the tangential component of the
field may remain finite at the surface, thus having a jump at the surface (note that
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the normal component is continuous though). The gradient of the field, and thus the
current density diverges near the surface. Indeed,

j D 1


0
r � B D .1C i/


0ı

ˇ̌
ˇ̌
ˇ̌
B0y

�B0x
0

e�.1Ci /z=ı

Thus, there is always some current at the surface of the conductor. One usually
introduces a surface current density jS defined by

jS D
Z C1

0

jdz D n � B=
0

which is finite and measures the jump in the tangential components of the magnetic
field when one crosses the bounding surface.

Now, let us focus on the electric field in the solid. We have

E D .1C i/

�s
0ı
ez � B0e�.1Ci /z=ı D O.

r
!

�s
/

It shows that this field disappears as expected when the conductivity is infinite. Thus
at the interface with a perfect conductor we should write

E � n D 0 (10.15)

namely, the tangential electric field vanishes. Using Ohm’s law and the fact that B
et j are both tangential to the bounding surface, this condition also reads

j � n D 0 or .r � B/ � n D 0 (10.16)

10.2.3 The Energy Equation with a Magnetic Field

10.2.3.1 The Maxwell Tensor

We shall first note that the Laplace force j � B is also the divergence of a tensorial
field. Indeed,

.j � B/i D @j˙ij

where

˙ij D 1


0
.BiBj � 1

2
B2ıij/

Œ˙� is the magnetic stress tensor or Maxwell tensor.
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10.2.3.2 Joule Heating

To derive the equation governing the local evolution of internal energy we need to
start with the energy balance that lead us to (1.29) and to introduce the magnetic
terms.

For that, we consider some volume independent of time because the magnetic
field is not attached to the fluid. The energy balance in this volume reads

d

dt

Z
.V /

�
�.
1

2
v2 C e/C B2

2
0

�
dV D �

Z
.S/

�.
1

2
v2 C e/v � dS �

Z
.S/

E � B=
0 � dS

C
Z
.V /

f � vdV C
Z
.S/

vi�ijdSj

�
Z
.S/

F � dS C
Z
.V /

QdV

In this expression the new terms are the magnetic energy density that completes
internal and kinetic energies, and the Poynting flux E � B=
0 that represents the
surface flux of electromagnetic energy through the boundary. We may be surprised
of the absence of the Laplace force. This is natural: the Laplace force does not
modify the energy content of the volume. It just permits exchanges between the
kinetic and magnetic energies reservoirs. To simplify the foregoing energy balance
we need using the magnetic field (10.9). After a scalar product by B=
0 and
using (12.40), we obtain

@

@t

�
B2

2
0

�
D r � Œ.v�B��r �B/�B�=
0�v �.j�B/��.r �B/2=
0 (10.17)

This expression shows that the power of the Laplace force v � .j � B/ extracts energy
from the magnetic reservoir (and so fills that of kinetic energy).

Now, combining the magnetic energy equation with that of kinetic energy (1.28)
(completed with the Laplace force work), we finally get:

�
De

Dt
D r � .�rT /�Pr � v C 


2
.r W v/2 C �.r � v/2 C �.r � B/2=
0 (10.18)

This equation shows that the magnetic field is at the origin of a new source of
internal energy (and entropy) through the term �.r � B/2=
0 which represents the
Joule heating (see exercises).
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10.3 Some Properties of MHD Flows

10.3.1 The Frozen Field Theorem

When the diffusion time of the magnetic field L2=� is large compared to the
advection time L=V , the magnetic field is just like “frozen” in the fluid. The field
lines are attached to the fluid particles. Then, we can show the following theorem:

When the magnetic Reynolds number increases to infinity, the magnetic field flux
through a surface attached to fluid particles is constant.

To prove this theorem, we need to show that the integral
R

B � dS is constant
when S is attached to fluid particles. If we use the vector potential A of the magnetic
field, the demonstration is quite similar to that of Kelvin’s theorem that we studied
in Chap. 3. Indeed, setting � D 0, we have

@B
@t

D r � .v � B/ ” @A
@t

D v � r � A C rQ (10.19)

whereQ is an arbitrary function.
Let us call �.t/ the magnetic flux through the surface S.t/ which leans on the

contour C.t/ carried by the fluid. We write

�.t/ D
Z
S.t/

B � dS D
I
C.t/

A � d l (10.20)

Just like in Kelvin’s theorem demonstration, we use relation (1.13) and find

d�

dt
D
I
C.t/

�
@Ai

@t
� .v � B/i

�
dli D

I
C.t/

@iQdli D 0

where we used (10.19). The flux of B through an open surface given by a contour
attached to fluid particles is therefore a constant.

10.3.2 Magnetic Pressure and Magnetic Tension

The Laplace force may also be written as

j � B D 1


0
.r � B/ � B D 1


0
.B � r/B � r

�
B2

2
0

�
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thanks to (12.43). In this new expression we note that part of the force derives from
a scalar potential which is known as the magnetic pressure. We set

Pm D B2

2
0
(10.21)

The magnetic pressure is therefore identical to the magnetic energy density.3

The remaining term, .B � r /B can be split, just as .v � r /v in Euler’s equation
(see Chap. 3, 3.12), as

.B � r /B D B
@B

@s
es C B2n

Rs
(10.22)

The first term is called the magnetic tension since it is parallel to the field line while
the second term is the curvature force since it grows as the radius of curvature Rs
decreases. Note that the tension term is equal to the longitudinal component of the
magnetic pressure gradient. This is a consequence of the fact that the Laplace force
has no component along B.

10.3.3 Force-Free Fields

When the current density is parallel to the magnetic field, the Laplace force vanishes.
Such situations are thought to exist (approximately) in regions where the magnetic
pressure is strong enough to control the distribution of matter, and therefore that of
currents. The most famous example is the atmosphere of the Sun: there the magnetic
field is dominating and shapes the distribution of matter. The most spectacular
illustration of this situation is given by solar prominences (see Fig. 10.1). The
structure of these magnetic features is often approximated using a force-free field.
Below, we shall also use a force-free field to get a simple example of a dynamo.

If the Laplace force is vanishing, then the magnetic field verifies the following
extra-equation

r � B D K.r/B (10.23)

The functionK.r/ is unknown, but since r � B D 0, it must verify:

B � rK D 0

which means that it is constant along the field lines.

3The reader may verify that an energy volumic density is dimensionally identical to a pressure.
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Fig. 10.1 Left a modelling of the solar coronal magnetic fields using force-free fields by
Tadesse et al. (2013). Right extrapolation of the magnetic field of the star V374 Pegasi from
spectropolarimetric observations. This star is a red dwarf of 0.28 solar mass with a radius about one
third that of the Sun. Its magnetic field is quite strong (0.2 T) and generated by a turbulent dynamo
triggered by the thermal convection that transport heat from the central regions to the surface (see
Morin et al., 2008). (Picture by M. Jardine & J.-F. Donati)

One example of a force-free field may be obtained if we assumeK to be constant.
Then, ��B D Kr � B D K2B, which means that B verifies Helmholtz equation,
namely:

.�CK2/B D 0

Since we took the curl of (10.23), the solution of this equation are too general, but
among them, there are some where the curl of B is parallel to B. A simple example
is given by

B D B0

ˇ̌
ˇ̌̌
ˇ
cos Kz
sin Kz
0

which is indeed a force-free field.
There are other solutions in cylindrical or spherical geometry, but they are more

complex (see Moffatt 1978 for instance).
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10.3.4 The Equipartition Solutions and Elsässer Variables

When the fluid is incompressible and when diffusive effects are neglected (� D
� D 0), there exists a simple steady solution to the equations of MHD. The equations
for a steady flow indeed read:

�v � rv D �r .P C Pm/C 1


0
B � rB

r � .v � B/ D 0

r � v D r � B D 0

These equations are satisfied if

v D ˙ Bp
�
0

and P D Cst � Pm (10.24)

This is the equipartition solution because

1

2
�v2 D B2

2
0

The kinetic energy density equals the magnetic energy density. This solution
shows that the quantity B=

p
�
0 is a velocity. This is the Alfvén speed. The

equipartition solution is a solution of the nonlinear equations. It slowly fades with
time when diffusion is included (over a typical diffusion time min.L2=�;L2=�/).
Chandrasekhar (1961) has shown that this solution is linearly stable.

We shall come back later on the physical meaning of the Alfvén speed. We
may however notice that it naturally introduces new variables, called the Elsässer
variables, which are defined as:

z ˙ D v ˙ Bp
�
0

(10.25)

Combining the momentum and induction equations (and taking into account
diffusion terms), we can derive this other form of the MHD equations, namely

8̂̂
<̂
ˆ̂̂:

@z C

@t
C z � � rzC D �r� C �C�z C C ���z�

@z �

@t
C z C � rz� D �r� C ���z C C �C�z�

(10.26)

where we set � D .P C Pm/=� and �˙ D 1
2
.� ˙ �/. The equipartition solutions

are simply z˙ D 0.
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10.4 The Waves

10.4.1 Alfvén Waves

Let us consider an incompressible fluid bathed by a uniform magnetic field B.
The fluid is in equilibrium. Small amplitude perturbations are denoted b for the
magnetic field, v for the velocity and p for the pressure. We neglect diffusion. These
perturbations are governed by the following equations:

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

�0
@v
@t

D �rp C 1


0
.r � b/ � B

@b
@t

D r � .v � B/

r � v D r � b D 0

(10.27)

We first derive the dispersion relation of the associated freely propagating waves.
We set

v / exp.i!t C ik � x/; b / exp.i!t C ik � x/

The system (10.27) turns into

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�0!v D �pk C .k � b/ � B=
0

!b D k � .v � B/

v � k D b � k D 0

(10.28)

which leads to

8̂<
:̂

b D k�B
!

v



!2 � .B�k/2

�0
0

�
v � k D 0

(10.29)

so that the dispersion relation is

!2 D .B � k/2

�0
0
(10.30)
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We now introduce the Alfvén speed VA D B=
p
�0
0 and � the angle between the

wave vector k and B. We get

!

k
D VA cos � (10.31)

The Alfvén speed is therefore the maximum velocity of the waves. These waves
are the Alfvén waves. Just like inertial waves or gravity waves, these waves do not
propagate isotropically. They cannot propagate in a direction perpendicular to the
field, and are the fastest in the direction parallel to the field lines. These waves may
be thought as the ones propagating along a string, where the magnetic field lines
play the role of the string. Their group velocity,

vg D rk!.k/ D Bp
�0
0

D VA
B
B

shows that the energy only propagates along the field lines at the Alfvén speed.
Unlike inertial and gravity waves, the phase and group velocities are not orthogonal.

10.4.2 Magnetosonic Waves

When the compressibility of the fluid cannot be neglected, Alfvén waves are coupled
with acoustic waves and form the set of magnetosonic waves which we now study.

To analyse their properties, we start from (10.27) but now taking into account the
density perturbations. Still considering infinitesimal amplitudes, mass conservation
now implies:

@�

@t
C �0r � v D 0

Just like for acoustic waves, the density perturbation is related to the pressure one
by p D c2s �, where cs is the sound speed (see 5.16). As usual, we decompose
the disturbances on the plane waves and get the following relations between the
amplitudes:

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

b � k D 0

!�C �0v � k D 0

!b D k � .v � B/
�!v D �pk C .k � b/ � B=
0
p D c2s �

(10.32)

Eliminating the pressure, the magnetic field and the density, we are left with an
equation where there is only the velocity amplitude:

�0
0!
2v D .�0
0c

2
s C B2/.v � k/k C .k � B/2v � .v � B/.k � B/k � .k � B/.k � v/B
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The dispersion relation is conveniently derived if we write this equation in a matrix
form (like 5.8). Then, we set to zero the determinant. Very generally, we may fix
the direction of some vectors. For instance, we may choose B D Bez and, using
cylindrical coordinates, set k D kses C kzez. As before, � is the angle between B
and k. We also set B2 D �0
0V

2
A . Thus, the foregoing equation reads

˝2v D Œ.c2s C V 2
A/k � v � V 2

Akzvz�k � V 2
A.k � v/kzez

where˝2 D !2 � k2z V 2
A . More explicitly,

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

˝2vs D .V 2
Bk

2
s /vs C .c2s kskz/vz

˝2v' D .V 2
Bk'ks/vs C .c2s k'kz/vz

˝2vz D .c2s kskz/vs C .c2s � V 2
A/k

2
z vz

(10.33)

where V 2
B D V 2

A Cc2s . Zeroing the determinant of this system leads to the dispersion
relation:

.!4 � !2k2.V 2
A C c2s /C k2c2s k

2
z V

2
A/.!

2 � k2zV
2
A/ D 0 (10.34)

This new relation contains three types of waves that are specified by their phase
velocity !=k. The first one is the pure Alfvén wave:

!

k
D VA cos �

For this wave, compressibility does not play any role. Indeed, taking the last two
equations of (10.33), we find that ksvs D kzvz D 0 and v' undetermined. This is
always a transverse wave, namely k � v=0, and the density fluctuation is always zero.
The velocity field is perpendicular to the plane formed by the wave vector and the
magnetic field.

The two other waves have the following phase velocity:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

Vf D

vuutV 2
A C c2s C

q
.V 2
A C c2s /

2 � 4 cos2 � V 2
Ac

2
s

2

Vs D

vuutV 2
A C c2s �

q
.V 2
A C c2s /

2 � 4 cos2 � V 2
Ac

2
s

2

(10.35)

They correspond, respectively, to the fast magnetosonic wave and the slow mag-
netosonic wave. In general these waves are neither transverse nor longitudinal.
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a b

Fig. 10.2 Phase velocity of the three magnetosonic waves in polar coordinates. The solid line
denotes the Alfvén wave, the dotted line is for the slow magnetosonic wave and the dashed line
the fast magnetosonic wave. Left The case where the medium is such that VA > cs. Right when
VA < cs (here VA D 0:9cs )

Two cases deserve some attention: the case when the wave propagates either
perpendicularly (� D �=2) to the magnetic field or along it (� D 0).

• If � D 0, then Vf D cs and vs D v' D 0. The wave is longitudinal. This is just
a plain acoustic wave. There is no magnetic field perturbation. The slow wave
verifies Vs D VA: this is a pure Alfvén wave.

• If � D �=2, we find only the fast magnetosonic wave, propagating with the

phase velocity Vf D
q
V 2
A C c2s . It is longitudinal. In fact, this is an acoustic

wave which propagates in a fluid whose pressure is increased by the magnetic
pressure.

We show in Fig. 10.2 the phase velocity of all these waves for every angle � . This
diagram is sometimes called Friedrich diagram.

10.5 The Dynamo Problem

One of the fascinating properties of conducting fluids is their ability to generate
magnetic fields by the famous dynamo effect. Thanks to this effect, planets like the
Earth or Jupiter or stars like the Sun own a magnetic field.

The dynamo problem is also one of the most complex in Fluid Mechanics,
because no simple solution of this problem exists.
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10.5.1 The Kinematic Dynamo

To make a first step into the dynamo problem, it is convenient to start with the one
of the kinematic dynamo. A kinematic dynamo is a velocity field that amplifies the
magnetic field without being perturbed by the Lorentz force. Such a velocity field
is prescribed and whether the solution of the induction equations grows or not the
velocity field is considered as a dynamo or not. Thus we give v and solve:

8̂
<̂
ˆ̂:

@B
@t

D r � .v � B/C ��B

r � B D 0

(10.36)

with boundary conditions. Note that this problem is linear for B. We may set

B.r; t/ D B.r/e�t

and the velocity field is a kinematic dynamo if and only if there exist a critical
diffusivity �crit such that if � < �crit then Re.�/ > 0. Introducing a length scale
L and a velocity scale V , we may associate with �crit a critical magnetic Reynolds
number beyond which the magnetic field is amplified.

The reader may have guessed that finding a kinematic dynamo is much more
difficult than determining the stability of a flow. Indeed, in this new problem, a very
large number of “parameters” control the stability of the magnetic field. These are
all the values of the function v.r/ in the fluid’s domain. In fact, a kinematic dynamo
is to be found in a function space. In addition, we shall see below that, when a
dynamo exists, it cannot be a simple velocity field.

Two kinds of kinematic dynamos are usually distinguished: the fast dynamos and
the slow dynamos. If the time scale which controls the growth of the magnetic field
is the diffusive one, namelyL2=� then the dynamo is said to be slow. If, on the other
hand, this time scale is the advective one, i.e. L=V , then the dynamo is said to be
fast.

Presently, nobody knows a criterion on the velocity field that tells whether a
dynamo is slow or fast. We only know that some characteristics of the flow are
favourable for a fast dynamo. For instance, if the trajectory of the Lagrangian parti-
cles are chaotic or if the velocity field owns shear discontinuities, the amplification
of the magnetic field may be fast.

10.5.2 The Amplification of the Magnetic Field

As a first step, we shall examine the ways magnetic fields can be amplified by a
flow. This is actually the role of the term r � .v � B/ in the induction equation.
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To show this, let us consider the case where the velocity field is zero and show that
necessarily the magnetic field disappears. B verifies

8̂̂
ˆ̂<
ˆ̂̂̂
:

@B
@t

D ��B

r � B D 0

Boundary conditions

(10.37)

We scalarly multiply the first equation by B and integrate it over the whole space.
This gives us the evolution of the magnetic energy (up to the 
0 factor):

d

dt

Z
1

2
B2dV D �

Z
B ��BdV (10.38)

with (12.40) we find

r � .B � .r � B// D .r � B/2 � B � r � r � B

thus
Z
.V /

B ��BdV D �
Z
.V /

B �r �r � BdV D
Z
.S/

.B �r � B/ � dS �
Z
.V /

.r � B/2dV

Now we assume that the conducting fluid does not fill the whole space, so that r �B
is zero on some sufficiently large surface S . The magnetic energy verifies:

dEM
dt

D ��
Z
.V /

.r � B/2dV (10.39)

which shows that it decreases with time. If there is some amplification, it must come
from the r � .v � B/-term, which we now study.

Using the equality (12.41), the induction equation may be rewritten as:

DB
Dt

D
.I/‚ …„ ƒ

.B � r /v �
.II/‚…„ƒ

Br � v C��B (10.40)

Two terms are potentially able to amplify the magnetic field. The role of the second
one (II) is easy to understand: when the (compressible) fluid flow is convergent
(r � v < 0) the field lines are gathered, the flux density (namely, the field) increases
(see Fig. 10.3a). This term disappears when the compressibility of the fluid vanishes.
It remains however the first term (I) which is also able to increase the magnetic field.
We see that this phenomenon occurs when the velocity gradient is parallel to the
magnetic field. In this case the component of the magnetic field along the velocity
vector grows. This is illustrated in Fig. 10.3b. There, we see that if the magnetic field
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Created component

Initial
component

B
B

v

a b

Fig. 10.3 Amplification of B by (a) a converging flow: the flow convergence gathers the field lines
thus increasing B but does not change its direction. In (b) B is amplified through the raise of a new
component

owns a single component and the velocity field is in the direction orthogonal to it,
with some shear, then the magnetic field gets a new component parallel to v while
the initial component is not affected. Hence, the magnetic energy increases locally.
One may note the analogy with vorticity (see Chap. 3).

10.5.3 Some Anti-Dynamo Theorem

The dynamo problem is a difficult one because there is no simple velocity field
that is able to amplify a magnetic field. Generally speaking, a dynamo has a low
degree of symmetry. We show below that no purely axisymmetric dynamo exists.
This result is the first antidynamo theorem. It was first demonstrated by Cowling
(1933) and may be stated as follows:

An axisymmetric magnetic field cannot be sustained by an axisymmetric velocity field.

We demonstrate this theorem by showing that if both B and v are axisymmetric,
then B necessarily decays. For this, we first write B in cylindrical coordinates:

B.s; z; t/ D

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ

1

s

@A

@z
B

�1
s

@A

@s

(10.41)

Here B is the toroidal component of the field while A is related to the toroidal
component of the vector potential by A D �sA' . A controls the meridional
field (also called the poloidal component). We now derive equations governing the
evolution of A and B (details are given in appendix).
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Using the components along es and ez of the induction equation, we find the
equation for A:

@A

@t
C v � rA D �

�
� � 2

r

@

@r

�
A (10.42)

This equation shows that A is simply advected and diffused. As time passes, it
evolves towards a constant, which means that the meridional magnetic fields go
to zero.

When A is a constant, then B verifies

@B

@t
C sv � r .B=s/ D �.� � 1=s2/B (10.43)

where we assumed here that r � v D 0. This is a similar equation as the one for A
and therefore B also converges to a constant, which is necessarily zero (why?).

Thus, no axisymmetric velocity field can sustain an axisymmetric magnetic field.

10.5.3.1 Other Cases

The foregoing theorem is one case among a larger set of theorems which state cases
where a magnetic field cannot be (re)generated. Here are some examples:

1. No magnetic field independent of one space coordinate can be sustained by a
velocity field of the same type.

2. A divergence-free velocity field without any radial component (namely always
tangent to a sphere) cannot sustain a magnetic field.

3. A two-dimensional flow cannot sustain a magnetic field.
4. A purely radial flow cannot sustain a magnetic field.

10.5.3.2 Conclusions

All these theorems show that a two-dimensional velocity field cannot sustain a two-
dimensional magnetic field, whatever the surface we work on (plane, cylinder or
sphere). A magnetic field can be generated only in three dimensions.

10.5.4 An Example: The Ponomarenko Dynamo

According to the foregoing discussion, a simple example of a dynamo flow is not
easy to find. The Ponomarenko dynamo is one of them and was found not so
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long ago. The flow has the following form:

v D !se' C U ez s < a

v D 0 s > a

in a fluid that fills the whole space. This is an axisymmetric flow and therefore
only non-axisymmetric magnetic fields can be amplified. We are thus looking for
solutions of the form:

B D B0.s/ei.m'Ckz/C�t

We leave the resolution of this problem to the reader as an exercise. The result is
the following: if the product !U is large enough, then there exist unstable magnetic
modes, for which Re.�/ > 0 and m ¤ 0 of course. This flow can thus amplify
magnetic fields. Two ingredients are indeed very favourable to this property: first, it
is a helical flow. Helicity

H D v � r � v D 2!U

is non-zero and we note that a critical value of it determines the dynamo action. We
shall see below that this is indeed an important quantity for dynamos. Second, the
flow owns a very steep (actually infinite) velocity gradient at r D a. This is a very
useful feature for a dynamo because we noticed that magnetic field amplification
only depends on the velocity gradients. This infinite gradient implies that all the
scales of magnetic field are amplified, and in fact lead to a fast dynamo (see Gilbert
1988).

10.5.5 The Turbulent Dynamo

We learnt that dynamos are necessarily flows of low symmetry. Hence, it is no
surprise that turbulent flows are very good candidates to be dynamos. Actually,
natural dynamos in stars or planets are all turbulent flows. Of course, using
turbulence to make magnetic fields is not an obvious way since we have no general
theory of turbulent flows as we saw in the previous chapter. Nevertheless, the
analysis of equations reveals some general laws that are helpful to understand what
we see on the Sun or planets (including the Earth) as far as magnetic field are
concerned (see Fig. 10.4 for an illustration of the solar magnetic cycle).

To study the role of turbulence in the generation of magnetic field it is useful to
split the fields into their (ensemble) average and fluctuating parts. Thus

B D hBi C B0 and v D hvi C v0
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Fig. 10.4 The magnetic cycle of the Sun. Up The surface covered by sunspots as a function of
time. Bottom The distribution of sunspots as a function of latitude and time (color indicates the
importance of the spotted area). This diagram shows that spots appear at a latitude that decreases
with time. When the equator is reached, a new cycle starts with the emergence of new spots around
latitudes ˙30 ı(source: Dr. David Hathaway, NASA)

Reporting this decomposition into the induction equation and taking the average,
we get

@hBi
@t

D r � .hvi � hBi/C r � hv0 � B0i C ��hBi

Correlations between velocity and magnetic field fluctuations appear. They generate
a mean electric field:

Ei D hv0 � B0ii
To go forward, we need to model this correlation. When the mean magnetic field
is not too strong this may be done rather precisely. Indeed, the magnetic field
fluctuations verify:

@B0

@t
D r � �hvi � B0 C v0 � hBi�C r � .v0 � B0 � hv0 � B0i/C ��B0

If the velocity fluctuations are independent of the mean magnetic field, which is
expected if this mean field is weak enough, then the magnetic field fluctuations
depend linearly on hBi, as well as hv0 � B0i. Thus, we may write:
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hv0 � B0ii D aijhBj i C bijk@j hBki C � � � (10.44)

where the tensors Œa� and Œb� are functions of the turbulent velocity field (not
perturbed by the mean magnetic field). We may observe that they are two pseudo-
tensors that are not invariant by parity transformations. For an isotropic turbulence
we can write

aij D ˛ıij and bijk D ˇ�ijk :

ˇ is a true scalar but ˛ is a pseudo-scalar which vanishes if turbulence is parity-
invariant. ˇ has the dimension of a diffusivity and is consequently interpreted as the
turbulent diffusivity of the magnetic field. ˛ has the dimension of a velocity and
gives birth to the now famous alpha effect, which we now discuss.

10.5.6 The Alpha Effect

The alpha effect is important in natural dynamo because this is an efficient way to
generate magnetic fields. To get a more precise idea of the way it works, we take the
example of a mean force-free magnetic field with an alpha effect. We assume that
the mean velocity field is zero. Thus, the mean magnetic field verifies:

@B
@t

D ˛r � B C �turb�B (10.45)

where we assumed that ˛ and ˇ are constants. We also defined �turb D � C ˇ. Let
us now determine the condition under which the mean magnetic field is amplified
by turbulence. We set

B D B0.r/e�t

wherer�B0.r/ D KB0.r/. Using (10.45), we find the following dispersion relation
of the Fourier modes:

� D ˛K � �turbK
2 (10.46)

It shows that if ˛ > �turbK , the field is amplified.
Another way to see the amplification effect of the new term ˛r � B is to

reconsider Cowling’s antidynamo theorem. Equation (10.42) now reads:

@A

@t
C v � rA D ˛sB C �turb

�
� � 2

s

@

@s

�
A (10.47)
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There we see that we no longer have the simple advection-diffusion of the potential
A that leads to the disappearance of the field. The toroidal component of the field B
comes into play and allows the regeneration of A, which in turn regenerates B .

10.6 Exercises

1. Show that the electric current that would result form the presence of free charges
in the non-relativistic flow of a conducting fluid is always negligible compared
to the induced current. Show that it implies that the force exerted on the fluid by
the electrostatic forces is always very small compared to the Laplace force.

2. Show that the power dissipated by Joule effect in an electric circuit (RI2 where
R is the resistance of the circuit and I the intensity of the current that circulates)
has the same origin as the magnetic dissipation that appears in (10.18).

3. Study the dispersion relation of a plane wave in an homogeneous isotropic
turbulence where the alpha effect is present and where the mean velocity is zero.

4. The magnetorotational instability: This instability is much studied in Astro-
physics since it is thought to be the main source of turbulence in accretion discs
(see Chap. 6). Here we propose a simplified study of this instability.

We start with the system made of a differentially rotating incompressible fluid
contained between two infinitely long cylinders (see Sect. 6.2.1). The fluid is
now bathed by a uniform magnetic field parallel to the rotation axis ez. Let
U D U.s/e' D s˝.s/e' be the basic differential rotation and u the velocity
perturbation, B0ez the imposed magnetic field and ıB D B0b its perturbation.
We assume that all perturbations are axisymmetric, of vanishing amplitude and
proportional to exp.i!t/.

(a) Show that

i!u D 2˝u'es � 2

2˝
use' � rp=�C v2ar � b � ez (10.48)

i!b D r � .u � ez/C .b � r /U � .U � r /b (10.49)

where magnetic diffusion is neglected.  is the epicyclic frequency as given
by (6.10). What is the expression of v2a ?

(b) Show that

.b � r /U � .U � r /b D s
d˝

ds
bse'

(c) We now assume that disturbances just depend on z and are proportional to
exp.ikz/. Show that

r � .u � ez/ D iku and uz D bz D p D 0

(d) and deduce that
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8̂
ˆ̂<
ˆ̂̂:

i!us � 2˝u' D v2aikbs
i!u' C 2

2˝
us D v2aikb'

i!bs D ikus
i!b' D iku' C s d˝ds bs

(10.50)

(e) From the foregoing relations show that the dispersion relation reads

!4 � .2 C 2v2ak
2/!2 C v2ak

2

�
v2ak

2 C s
d˝2

ds

�
D 0 (10.51)

(f) Show that at least one root of this equation may lead to an instability. Derive
the following condition for instability:

s
d˝2

ds
< �v2ak

2 (10.52)

What is the general condition on the flow that can be deduced?
(g) We set y D v2ak

2. Show that the growth rate of the instability is maximum
when

y D �s d˝
2

ds

�
1

4
C 2

16˝2

�

(h) Show that the maximal growth rate is given by

!max D s

2

ˇ̌
ˇ̌d˝

ds

ˇ̌
ˇ̌ (10.53)

(i) Show that the keplerian flow ˝ / s�3=2 of an accretion disc of thicknessH
can be unstable if the background magnetic field is less than a limiting value.
Give the expression of this upper limit.

Appendix: Equations of the Axisymmetric Field

We start from (10.41) and write the diffusion term and the curl of the electric field
E D v � B :

�B

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ

.� � s�2/
�
1

s

@A

@z

�

.� � s�2/B

��
�
1

s

@A

@s

�
r � E

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌

�@E'
@z

@Es

@z
� @Ez

@s

1

s

@sE'

@s
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The es and ez-components of the induction (10.10) lead to:

@A

@t
D �sE' C �s.� � s�2/A=s C f .s/

� @

@t

@A

@s
D @sE'

@s
� �s�

�
1

s

@A

@s

�

We take the s-derivative of the first equation and add it to the second equation. We
find:

0 D f 0.s/C �

�
@

@s
s.� � s�2/A=s � s�

�
1

s

@A

@s

��

but

@

@s
s.��s�2/A=s�s�

�
1

s

@A

@s

�
D @2

@s2

�
s
@

@s

A

s

�
� @

@s

�
A

s2

�
� @

@s

�
s
@

@s

�
1

s

@A

@s

��

which shows that the terms in parenthesis cancel and that f 0.s/ D 0. Noting that

sE' D vs
@A

@s
C vz

@A

@z

we find (10.42) up to a constant.
To derive the equation forB we take the '-component of the induction equation;

hence

@B

@t
D @Es

@z
� @Ez

@s
C �.� � s�2/B

setting v' D s!, then

Es D �Bvz � ! @A
@s

and Ez D Bvs � !
@A

@z

Considering the case where A ! Cst, the equation for B now reads

@B

@t
C v � rB D �B

�
@vz

@z
C @vs
@s

�
C �.� � s�2/B

using r � v D 0, we rearrange the terms so that

@B

@t
C svs

@

@s

�
B

s

�
C svz

@

@z

�
B

s

�
D �.� � s�2/B

from which we find (10.43).
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Further Reading

A classical reference to the subject of fluid dynamos is the book of K. Moffatt
Magnetic field generation in fluids (1978) unfortunately out of print. The lectures of
A. Pouquet and P. Roberts in Les Houches volume Astrophysical Fluid Dynamics
(1992) give another introduction to MHD turbulence and dynamos, but see also
An Introduction to Magnetohydrodynamics by Davidson (2001). One may also
consult Lectures on Solar and Planetary Dynamos (Proctor & Gilbert Edts, 1994),
or Principles of Magnetohydrodynamics: With Applications to Laboratory and
Astrophysical Plasmas by Goedbloed & Poedts (2004).
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Chapter 11
Beyond Fluid Mechanics: An Introduction
to the Statistical Foundations of Gas Dynamics

11.1 Introduction

While introducing Fluid Mechanics, we had to introduce also the idea of continuous
media, which is the mathematical idealization of real fluids (or solids). In many
circumstances, the limits of this approach arose: for instance the rheological laws,
which relate strain and stress, are not given by Fluid Mechanics, they need another
model. Fluid Mechanics considers these laws as given. In the first chapter we
observed that in the limit of small perturbations of the basic thermodynamic
equilibrium by the flow, we could derive the functional form of the rheological laws,
namely that of Newtonian fluids, but the specificity of the fluid was then condensed
in its viscosity or, more generally, in its transport coefficients.

Fluid Mechanics does not say anything about transport coefficients: it is in
the same position as Thermodynamics which does not say anything either on
thermoelastic coefficients of the various materials. Fluid Mechanics and Thermo-
dynamics are two theories of the macroscopic world. They give the general laws
that are followed by matter independently of its nature. But to be predictive, both
of them need to be completed either by a more detailed approach that includes its
microscopic nature, or by experimental measurements.

In the case of Fluid Mechanics, the derivation of the macroscopic rheological
laws from the microscopic properties of fluids is really well developed in the case
of gases. The case of liquids is much more complicated and thus less explored.1

The theory of the statistical properties of gases beyond equilibrium, which is
based on their microscopic properties, is usually called the kinetic theory of gases.
The present chapter offers an introduction to this difficult but fascinating subject.
We shall discover for instance how the dependence of the viscosity of a gas with

1A taste of this approach may be found in the book of Guyon et al. (2001a).
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respect to temperature gives a constraint on the potential of interaction between its
atoms (or molecules), thus opening another window on the microscopic world.

As the reader may guess, this is a wide subject which would require a whole
book. We wish to remain introductive therefore shall restrict ourselves to one
question: how can we derive Navier–Stokes equation and Fourier’s law for a gas
assumed to be a set of interacting particles? In other words, how can one move from
matter described as a set of interacting particles to a continuous medium?

In the following section we try to give a qualitative answer guided by our
intuition. Since this approach may not be fully satisfying to some readers, we pursue
with a more rigorous path, leading us to the Navier–Stokes equation. Although more
rigorous, this derivation still simplifies reality, but thus doing the reader will be
acquainted with Boltzmann equation and will uncover how to derive the viscosity
of a gas from its sole microscopic characteristics.

11.2 A Qualitative Approach

11.2.1 Back to the Continuous Medium

Let us imagine the change of the number of gas particles in a volume ıV when
this volume decreases from a macroscopic value to an infinitesimal one. Plotting the
particle density n D ıN=ıV (ıN is the number of particles in ıV ), as a function of
the scale .ıV /1=3, one obtains a curve like the one drawn in Fig. 11.1. Two values
need to be underlined: LM is a macroscopic scale beyond which density variations
are noticeable because the gas is not at equilibrium and Lm a microscopic scale
below which the particle density decreases until vanishing. Approximating the gas
by a continuous medium is assuming that the plateau at n D n0 continues until
ıV D 0.

Lm LM

n0

L

δN
δV

Fig. 11.1 A schematic representation of the number density as a function of scale
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Thus, we can build a continuum that represents the average properties of the
plateau appearing at scale LM . For this new medium all the variables are continuous
and derivable functions of space and time, except, eventually on some surface. Of
course it may well be that this plateau does not exist, if Lm 	 LM . In this case the
continuous medium model cannot be used. This model relies on the assumption that
there exist a separation of scale between the macroscopic and microscopic world,
namely Lm  LM . This is this separation of scale that misses when one tries to
build a mean-field theory of turbulence.

We shall remember that the continuous medium is a model of matter where all
the points of space are gifted of mean fields values, namely hvi .x; t/, hni .x; t/,˝
1
2
mv2

˛
.x; t/ etc. We’ll have to give the way to compute the averages, but this is not

necessary for our qualitative discussion and we postpone the precise definitions for
the next step. Presently, we just need to imagine that we take an average over a small
fluid volume that contains enough particles.

11.2.2 Particles Interactions, Collisions and the Mean Free
Path

To make progress we now need to review some important features of the micro-
scopic nature of the fluid, in other words we need to describe our model of atoms
or molecules that make the fluid. As mentioned previously, we restrict ourselves
to gases. At the microscopic level, these are characterized by the fact that their
particles do not permanently interact. Interactions represent a small fraction of
their trajectories and therefore can be called collisions. The main part of a particle
trajectory is a free fly at constant speed. This means that we assume an effective
short-range potential for the interaction between particles. We easily conceive that
this is valid only for dilute gases. To make this argument quantitative we introduce
the van der Waals radius rw of the particles: it can be thought as that of the sphere
where the interaction potential energy is of the same order as the kinetic energy of
the particles. Thus, a gas is dilute when

nr3w  1 (11.1)

where n is the numeric density of the particles. (11.1) means that the volume of the
particles is negligible compared to the volume occupied by the gas or else that

rw  n�1=3

namely that the van der Waals radius is very small compared to the mean distance
between particles.

For such a gas, the first step to understand its properties is to assume that the
particles are like elastic hard spheres of radii rw. For such a model, the interaction
potential is very simple: it is either zero or infinite. More realistic potentials will be
considered in the second step.
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Fig. 11.2 Collision between
two elastic hard sphere of
diameter d . The exclusion
sphere has a radius d

θ

θ

d

The hard elastic spheres model will serve us as a guide along this chapter. As a
start, it will allow us to define the mean free path, a crucial concept to understand
the microscopic world.

Let us first note that the distance between two balls is equal to their diameter
d when they collide (see Fig. 11.2). Thus, during its motion, a particle sweeps a
cylindrical tube of section �d2. Collisions occur when another particle is in this
cylinder when the particle passes.

Let v be the velocity of the particles, the volume swept per unit time is just �d2v.
If the number density is n, we may consider that N D n�d2v collisions occur per
unit time for a given particle. We here admit that the collided particles are fixed.
We deduce that 1=N is the time interval between to collisions. v=N is therefore the
distance swept between two collisions or the mean free path. Thus, we get

` D 1

�d2n

for the mean free path `. A more rigorous approach where one takes into account
the motion of the collided spheres gives (see Sect. 11.4.3):

` D 1p
2�d2n

(11.2)

Our simplified approach gives a very good order of magnitude.2

2 The origin of the
p
2-factor may be understood with a simple argument. We first observe that the

number of collisions is controlled by the relative velocity of the particles, i.e. N D n�d2vrel. But
vrel D v � v0 where v0 is the velocity of the test particle. If we identify vrel with the rms velocityq˝

v2rel

˛
, we get
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11.2.3 The Velocity of Particles

The characteristic velocity of the particles is that of thermal agitation vagit: if we
write the velocity of a gas particle as the sum of an average velocity hvi and
a random velocity of zero average u, the microscopic transport is controlled by
this random component. But various choices are possible for vagit. Indeed, we may
choose

vagit D u D hkuki or vagit D urms D
p

hkuk2i

that is to say the average of the norm of the velocity or the root-mean-square
velocity. Other choices are also possible. As we shall see later, the velocity statistical
distribution is close to the equilibrium Maxwell–Boltzmann one. Thus, we have

u D hkuki D

 m

2�kT

�3=2 Z C1

0

ue� mu2
2kT 4�u2du D

r
8kT

�m
(11.3)

and

urms D
p

hkuk2i D

 m

2�kT

�3=2 Z C1

0

u2e� mu2
2kT 4�u2du D

r
3kT

m
(11.4)

We choose v D u, but the other choice is not very different because urms=u ' 1:085.

11.2.4 Energy Transport

When we faced the problem of giving an expression to the (surface density of)
heat flux F, we assumed that the fluid was close to the thermodynamic equilibrium.
We thus expanded this quantity in powers of the temperature gradient taken as the
quantity measuring the distance to equilibrium.3 We thus deduced Fourier’s law:

F D ��rT

where � is the thermal conductivity.

˝
v2rel

˛ D ˝
v2
˛C ˝

v20
˛� 2 hv � v0i

The randomness and uncorrelation of velocities imply that hv � v0i D 0. Since the test particle is
not different from other particles

˝
v20
˛ D ˝

v2
˛
. Thus vrel D p

2v.
3Actually, this expansion can be generalized to all the physical quantities that measure the distance
to thermodynamic equilibrium like shear, gradient of concentration, current etc. We touch here
Onsager’s approach who worked out the general theory of slight deviations from thermodynamic
equilibrium. Our purpose here is not that general and we shall consider only situations where fluxes
depend only on a single quantity, which is correct in the simple cases that we are considering.
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z0

z0 + Δz

z0 − Δz

T (z0 + Δz/2)

T (z0 − Δz/2)

vx(z0 + Δz/2)

vx(z0 − Δz/2)

Fig. 11.3 The particles of a gas in two layers of thickness �z. The upper layer has a mean
temperature T .z0 C �z=2/ and a mean velocity vx.z0 C �z=2/, resp. T .z0 � �z=2/ and
vx.z0 ��z=2/ for the lower layer

In order to have more information on this coefficient, we consider the case
where the imposed temperature gradient is uniform along the z-axis, namely F D
��@zT ez. Dividing the gas into layers of thickness �z (see Fig. 11.3), we first
observe that in a steady state the mass of each layer is conserved. The particle flux
across any plane z D z0 is zero.

Let n be the number of particles per unit volume and v their typical velocity
(for instance their mean velocity hkvki). The number of particles crossing the plane
z D z0 in the upward direction through the surface element dS and during the lapse
of time dt is

ˇnvdtdS

where ˇ is a dimensionless constant of order unity. Each particle carries some
momentum and kinetic energy. As a first step we consider their kinetic energy, which
is a scalar quantity.

Setting to zero their mean velocities, the two layers at z0 ��z=2 and z0 C�z=2
differ by their temperatures T .z0 � �z=2/ and T .z0 C �z=2/ respectively. If we
remember that temperature is just a measure of the mean kinetic energy of the gas
particles, each particle of mass m moving from one layer to the other carries the
kinetic energy 1

2
mv2. On average, the flux of kinetic energy reads

F D ˇ0 n
2

�hmv2vzi.z0 ��z=2/� hmv2vzi.z0 C�z=2/
	

where ˇ0 is another dimensionless constant of order unity. Note that the flux is
oriented positively with increasing z. Now, we wish to use temperature rather than
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kinetic energy, so we use the relation (see appendix):

3

2
kT D 1

2
m
˝
v2
˛

where k is the Boltzmann constant. Orders of magnitude say that vz 	 v, hence˝
mv2vz

˛ 	 v
˝
mv2

˛
. This allows us to introduce the temperature in the expression of

F and, with the help of an expansion to first order, to obtain:

F D �ˇ00nv
3

2
kB

�
dT

dz

�
z0

�z

where ˇ00 is again a dimensionless constant of order unity. This result leads to the
following expression of �:

� D 3

2
kˇ00nv�z (11.5)

Now, the relation between density, mass of particles and number density is:

� D nm (11.6)

Besides, the heat capacity of such an ideal gas is

cv D 3

2

k

m
:

In addition, the thickness of the layer should be something like the mean free path `
of the particles. Thus, we may rewrite (11.5) as

� D �cvˇ�v` (11.7)

where ˇ� is still a dimensionless constant of order unity. We could have written
this expression directly, just using dimensional arguments from a set of dimensional
quantities describing the microscopical model we are using. However, our analysis
has the advantage to guide us towards this expression and to make us confident that
it contains the relevant physics. At this point, two directions are possible. The first
one is to use experimental results to derive ˇ�. If this coefficient turns out to be
of order unity, we have likely captured the relevant physics of the process leading
to heat conduction. If this is not the case, an important physical process has been
missed.

The second direction is to dig more into the theory in order to derive the
mathematical expression of ˇ� as a function of the microscopic characteristics of
the model. This second way is challenging and will be detailed in the following
sections. Before that we examine the other transport coefficients in a qualitative
way.
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11.2.5 Momentum Transport

We may now redo the same exercise for the momentum and derive an expression of
the shear viscosity of the fluid. Just as for heat conductivity, we need considering a
one-dimensional configuration. The easiest way is to consider a plane sheared gas
flow like v D v.z/ex.

We now need to estimate the force exerted by the layer at z0 ��z=2 on the layer
at z0C�z=2. This force comes from the momentum carried by the particles moving
between the layers. Particles moving upward (vz > 0) deposit momentum

m hvxi .z0 ��z=2/

in the layer at z0 C �z=2, while those moving downwards deposit m hvxi .z0 C
�z=2/ in the layer at z0 ��z=2. The momentum flux (positive upwards) is also the
tangential force exerted by the layer at z0 � �z=2 on the layer at z0 C �z=2 for a
surface dS, in other words

df x D ˇnvdS Œm hvxi .z0 ��z=2/�m hvxi .z0 C�z=2/�

D �ˇnvm
d hvxi

dz
�zdS D �ˇ�v�z

d hvxi
dz

dS (11.8)

where ˇ is O.1/. Let us now come back to the definition of the stress. The force
exerted on the surface element dS is:

d f D Œ��dS

where Œ�� is the stress tensor. Here we wish to know the force exerted by the layer at
z0 � �z=2 on the upper layer. Hence, we have to consider the plane z D z0 seen by
the lower layer. dS is oriented towards the fluid that exert the stress, so dS D �dSez

and df x D ��xzdS. Assuming the fluid is Newtonian, for a plane-parallel flow we
have

�xz D 

dvx
dz

H) df x D �
dvx
dz

dS

where 
 is the (dynamic) shear viscosity. Comparing this expression to (11.8), we
find the expression of shear viscosity, namely:


 D ˇ�v�z

As for the heat conductivity, we replace ˇ�z by ˇ�` using the mean free path `. The
foregoing expression leads to that of the kinematic viscosity � D 
=�,

� D ˇ�v` (11.9)
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As for the heat conductivity, we could have derived this expression by a straightfor-
ward dimensional analysis.

11.2.6 The Prandtl Number

The Prandtl number of a fluid is the ratio of its kinematic viscosity � to its heat
diffusivity  D �=�=cp (see Chap. 1, 1.46). From the expressions of � and � that
we derived previously, this dimensionless number reads

P D �
ˇ�

ˇ

where � D cp=cv. For a monatomic gas � D 5=3 while experimental measurements
show that P ' 2=3 (see Table 11.1). The foregoing relation suggests that ˇ�=ˇ '
2=5. Our naive model gives a Prandtl number of order unity, which is quite correct.
We may have thought that ˇ� ' ˇ implying that P >	 1, which is contradicted by
experiments. Observations thus show that ˇ� < ˇ , suggesting that kinetic energy is
more efficiently transported than momentum. A posteriori, this is not so surprising
since particles of high kinetic energy may indeed have a slightly larger mean free
path than those of small mean free path. This remark shows that if we wish to go
beyond simple orders of magnitude we need a more detailed statistical approach.

11.2.7 Comparing with Experimental Results

Let us end this section with a short discussion of experimental values compared to
those of our simplistic model. For that, we focus on the shear viscosity. To be fair
with the rigid elastic sphere model, we set ˇ� D 0:491 as given by the complete
statistical approach (see Sect. 11.7.5). We get


 D ˇ��`v D 2ˇ�

�3=2d 2

p
mkT (11.10)

In this expression the diameter of the particles is a crucial quantity. However it is not
well defined. If we think to an atom of helium, how can we define its radius? The
only way is to study the potential of interaction between two such atoms and try to
represent it by that of a hard sphere. This is not an easy matter. To circumvent this
difficulty, we may go back to Thermodynamics and remember that a more precise
model than that of ideal gases is the one of van der Waals. In the equation of state of
this model, the volume occupied by the atoms is one parameter of the model. This
is b in the equation of state

.P C a

v2
/.V � b/ D RT
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Table 11.1 We give the co-volume b associated with the van der Waals equation of state for
various gases and the van der Waals radius derived from (11.11)

Gas b cm3/mole rw (nm) ` (nm) 
calc (
Pa s) 
obs (
Pa s) Pobs

He 23:7 0:133 132 13:1 20: 0:680

Ne 17:1 0:119 164 36:5 32: 0:661

Ar 32:2 0:147 107 33:7 22: 0:672

H2 26:6 0:138 122 8:6 9: 0:693

Air 36:4 0:153 99 26:5 18: 0:714

We give the mean free path from (11.2) and the dynamic viscosity from (11.10). The experimentally
observed viscosity is also given as well as the experimental value of the Prandtl number. The
experimental values of co-volumes and viscosities are from Gray (1975). All these values are
computed at a temperature of 300 K and a pressure of 1 bar. The Prandtl numbers are measured at
0 ıC (Chapman and Cowling 1970)

here written for a single mole. b is actually an “exclusion” volume, namely a volume
that is not accessible by the atoms. It is also called the co-volume of the gas. If we
assume that these atoms are spheres of radius rw then

b D N
2

4

3
�.2rw/

3 (11.11)

where N D 6:022 1023 is the Avogadro number. The factor N=2 comes from the
fact that we are counting binary collisions only and therefore for the collisions of
two particles, only one volume is excluded.4 This radius is usually called the van
der Waals radius of the atom (for monatomic gases of course).

We can now calculate the viscosity of a gas from the experimental values of the
co-volume b. We did this exercise and reported the values in Table 11.1.

This table shows a first positive result: our simple model gives the right orders of
magnitude of the viscosities and a very good value for neon and hydrogen. However,
the matching is not that good with two other monatomic gases, helium and argon.

In fact the good results are an illusion. Our model predicts that the variations
of viscosity with temperature are like

p
T independently of the nature of the gas,

while experiments show that helium viscosity varies like T 0:65 (see Fig. 11.8). We
here reach the limits of our model and if we wish a better comparison between
theory and experiments we need going deeper into the modeling, especially in its
statistical sides.

4Another way of deriving this factor is to count the number of pairs for a set of N particles. There
are N.N � 1/=2 pairs. Thus when N � 1, there are just N=2 pairs for each particles. Thus the
exclusion volume is that indicated by (11.11).
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11.3 Concepts and Questions for a Statistical Approach

The curiosity of the reader may remain unsatisfied by the preceding section and
therefore we feel obliged to lead him or her in a more detailed discussion of
microscopic transport. However, a full description would need a whole book like
those of Vincenti and Kruger (1965) or Chapman and Cowling (1970). Our ambition
is necessarily more modest: we wish to show the reader how the equations of fluid
mechanics, which describe a continuous medium emerge from the dynamics of a
set of gas atoms or molecules and how transport coefficients like viscosity or heat
conductivity may be rigorously derived. Beside this aim, we’ll discover also new
questions that immediately come up from the microscopic side of the world.

11.3.1 The Distribution Function

11.3.1.1 Back on the Continuous Medium

When we derived the rheological laws of Newtonian fluids, we stressed the fact
that their fluid particles are very close to thermodynamic equilibrium. In view of
Fig. 11.1, it means that at scales L such that Lm < L < LM , atoms in ıV are
very close to thermodynamic equilibrium. We underlined “close” because if the
fluid particles are exactly at equilibrium, we know that no microscopic transport is
possible: viscosity and heat diffusion disappear corresponding to the perfect fluid
limit. The rest of the chapter aims at showing how a fluid flow generates this
deviation from thermodynamic equilibrium and how viscosity and heat conductivity
may be predicted.

To reach this goal, we need introducing a quantity that describes the statistical
state of fluid particles for scales Lm < L < LM . Hence, considering the ıN
particles that are in ıV , we shall sort them according to their velocity v, their spin `,
their excitation state, etc. We therefore assume that particles are numerous enough
so that ıN can be divided into subsets categorizing a class of particles. For instance,
we may sort the gas particles according to their speed and count those whose speed
belongs to Œv; v C dv�. More generally, we introduce a new function, namely

f .x; t I v; `; : : :/ (11.12)

called a distribution function. This function informs us not only about the number
density of atoms or molecules in space and time, which is the role of mass density
�.x; t/, but it also tells us about their distribution according to a given parameter
specific to the microscopic constituents of the fluid. Consequently, if we sum over
all the possible values of these parameters we should recover the number density:

n.x; t/ D
Z
f .x; t I v; l; : : :/d 3vd3` : : : (11.13)
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If all the particles have the same mass m, then

�.x; t/ D mn.x; t/ (11.14)

In what follows we shall restrict us to a dependence of the distribution function with
respect to x; t and v only, but we see that the concept is more general.

Finally, let us observe that the introduction of the distribution function f imposes
us to work in a space with 4C3 dimensions. To the usual space-time we have added
three new dimensions: those of the velocity space, which is hidden from us in the
macroscopic world.

11.3.1.2 The Limits of this New Description

As we may observe, the knowledge of the distribution function gives more details on
the state of a gas. In fact, we have now the possibility to determine the behaviour of
a gas beyond the local thermodynamic equilibrium. But its use requires that the gas
particles are numerous enough so that the statistical distribution of some parameters
makes sense and the first moments of the distribution are computable (for instance
a stress comes from a second order moment as we shall see below).

To better appreciate this limit we consider a real situation like that of helium
in the normal conditions (P = 105 Pa, T = 300 K). Then the mean free path is ` D
132 nm and the number of helium atoms in a cube of volume `3 is

n D P`3=kT D 5:6 104

which is large enough to make statistics, but we see that it won’t be possible to
consider much smaller scales. This is however sufficient for describing a gas within
a shock wave whose thickness is of order of a few mean free paths. The continuous
medium approximation represents the shock wave by a mere discontinuity.

11.3.2 An Equation Governing the Distribution Function

11.3.2.1 Back to Liouville Equation

In order to understand the origin of the equation that governs the distribution
function f , it is useful to consider shortly an even more fundamental description
of gas dynamics.

The ultimate description of a gas flow is of course that of the motion of each of
its atoms or molecules. If this gas contains N such particles, then the knowledge
of the 2N vectors

˚
qi
�
iD1;N and

˚
pi
�
iD1;N , that are respectively their positions

and momentum, allows us to predict (mathematically) the evolution of the system.
Hence, considering a 6N-dimensional space, the famous phase space introduced by
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Maxwell, the dynamical state of our N particles resumes to one point. Following a
wording of statistical Physics, we shall call this point a figurative point underlining
thus that it is just a mathematical representation of our system (Castaing 1970).

Now, just imagine that we prepare this system of N particles in N states or N
initial conditions. Each state is represented by a figurative point which moves in
the phase space according to the motion of the N particles. Hence, a “cloud of
points” evolves in the phase space, each point representing a possible trajectory
of the system.

The trajectory of the figurative points in the phase space is not random: it
is governed by the laws of Mechanics that control the motion of each of its
components. But the figurative points do not interact: they are just a representation
of the dynamical state of the set of the N particles. Thus, we can fill the phase space
with as many figurative points as we need. However, if we take N such points at
t D 0, there are still N such points at any later time: their number is conserved.
Thus, if we call � their numerical density we may say that this function

�.q1x; q
1
y; q

1
z ; p

1
x; ; p

1
y; p

1
z ; : : : ; p

N
x ; p

N
y ; p

N
z ; t/

obeys the law of local conservation

@�

@t
C r � .�v'/ D 0 (11.15)

by analogy with mass conservation in a fluid flow. Here .qn;pn/ represents the
position and momentum of the n-th particle. Of course the velocity v' is a velocity
in the phase space and the divergence is taken with respect to the 6N coordinates of
this space. Explicitly

r � .�v'/ D
NX
iD1

@� Pqix
@qix

C @� Pqiy
@qiy

C @� Pqiz
@qiz

C @� Ppix
@pix

C @� Ppiy
@piy

C @� Ppiz
@piz

where we noticed that the velocity in the phase space is simply

v' D .: : : ; Pqix; Pqiy; Pqiz ; Ppix; Ppiy; Ppiz ; : : : /

where the dot is for the time derivative. If we now assume that the system is
hamiltonian, then the time derivatives of the positions and momenta can be explicitly
expressed with Hamilton equations, namely

Ppik D @H

@qik
; Pqik D � @H

@pik
; 8i 2 Œ1; N �; k 2 Œx; y; z�

where H is the hamiltonian of the system, which is the sum of the kinetic and
potential energies expressed with the variables p and q. Using of this property we



420 11 Beyond Fluid Mechanics: An Introduction to the Statistical Foundations of Gas. . .

see that r � v' D 0. In other words, the fluid of figurative points is incompressible.
This is Liouville’s theorem. With (11.15), we deduce this other expression of the
theorem:

@�

@t
C v' � r� D D�

Dt
D 0 (11.16)

in other words the material derivative of � is vanishing.
Liouville’s theorem has another interesting consequence: if we consider a volume

of the phase space that is moving with the flow of figurative points, it implies that

d

dt

Z
V.t/

�dV D 0

since the number of points is conserved [one may also use the equality (1.10)]. Thus

Z
V.t/

�dV D
Z
V.t0/

�dV0 8t

but this is true for any volume, thus

�tdV D �t0dV0

But at a point comoving with the flow �t D �t0 , which implies

dV D dV0

or that the infinitesimal volume of phase space does not vary while following the
evolution of the system. This result may also be obtained using the Lagrangian
formulation of Fluid Mechanics. Indeed, the displacement of a figurative point from
its initial position q (a 6N-dimensional vector) obeys

x D q C �.q; t/

Lagrangian kinematics says that x.q; t/ is a mapping of space from t0 to t , the
jacobian of which measures the contraction/dilation (see 1.85). If we apply this
reasoning to the incompressible flow of figurative points, hence with a unit jacobian,
we have

d3q1d 3p1 � � �d3qNd3pN .t D 0/ D d3q1d 3p1 � � �d3qNd3pN .t/ (11.17)

which also expresses the constancy of the infinitesimal volume of the phase space
along a trajectory.
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11.3.2.2 The Boltzmann Equation for Non-Interacting Particles

Let us now consider a phase space for one particle. Such a space is six-dimensional
with co-ordinates .x; y; z; px ; py; pz/ for a point. Let us fill this space with N non-
interacting particles. These particles may be considered as N real particles that do
not “see” each other or asN representations of a unique particle, each with different
initial conditions, or likeN figurative points. From Liouville’s theorem the density �
of these points verifies Liouville’s equation (11.16). But, up to the mass of particles,
� is just identical to the distribution function f . Hence we may write that for non-
interacting particles f obeys

@f

@t
C v' � rf D 0

with

v' D . Px; Py; Pz; Ppx; Ppy; Ppz/

and thus

@f

@t
C Px @f

@x
C Py @f

@y
C Pz@f

@z
C Ppx @f

@px
C Ppy @f

@py
C Ppz

@f

@pz
D 0

if the particles are in a force field F , then using Newton’s law Pp D F and the
definition of time derivative Px D v, we finally get

@f

@t
C v � rxf C F

m
� r vf D 0 (11.18)

where rx and r v represent the gradients respectively taken with respect to space
coordinates and velocity coordinates.

Equation (11.18) gives a first version of the equation that governs the distribution
function f in the simple case of a gas made of non-interacting particles.

11.4 Boltzmann Equation �

Equation (11.18) is certainly too simple to describe the distribution function of a
real gas where particles interact. This interaction is represented by a potential like
the one shown in Fig. 11.4 where we see the one between two helium atoms.

A rigorous account of this interaction is very difficult but fortunately not
necessary in the usual conditions of gas dynamics. Indeed, the distance between gas
particles is large compared to the range of the interaction, which is usually of the
order of a few radii of the atoms. Hence, the interaction between two particles can be
described by a collision: a small part of the trajectory during which the interaction
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Fig. 11.4 The potential of
interaction between to helium
atoms according to Aziz et al.
(1979)

Fig. 11.5 Collisions and
interactions: the interaction
between two particles is
effective during a small
fraction of the trajectory: the
collision designate this small
fraction of the trajectory
when the motion is not
uniform

potential is non-vanishing as schematically represented by Fig.11.5. A collision is
therefore an approximate view of the interaction between particles: each particle
comes from infinity, interact and goes back to infinity. This is approximate because
infinity means the preceding or following collision. But the approximation remains
very good when the potential is of short range. To make this approximation more
concrete, let us consider helium in normal conditions (P D 101 325 Pa, T D 300 K).
The number of atoms per unit volume is n D 2:4 � 1025 m�3, meaning a mean
distance of 	 3:4 nm between atoms, which is 25rw (rw is the van der Waals radius).

Since in this case the interaction range is of the order of 0.5 nm (cf. Fig. 11.4),
we see that the use of collision is perfectly justified. However, in dense gases or
in liquids this concept is meaningless. For instance, in liquid water the number of
molecules per unit volume is n D 3:3�1028 (for a density of 1,000 kg/m3 and mole
mass of 18 g) which is equivalent to an intermolecular distance of 0.3 nm while the
size of the water molecule is 0.3 nm. The notion of collision in this case makes no
sense because water molecules are always interacting with their neighbours.
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The concept of collision is therefore useful in dilute gases. When the gas is
sufficiently dilute, collisions are essentially binary collisions. We shall only consider
this case. Since this means that the average distance between gas particles is large
compared to the interaction range, it may be summarized by the inequality

nr3w  1 (11.19)

which we assume for the rest of the chapter.
Taking care of this constraint, the equation of the distribution function for

non-interacting particles can be completed to take into account the collisions. We
transform (11.18) into

Df

Dt
D C

where C is a collision integral. We shall now derive the expression of this integral
in the case of binary collisions.

11.4.1 The Collision Integral

To derive and expression for C we have to count the collisions that add or remove
gas particles from the small volume of velocity space d3v around v. For this, we set

Cd3xd3v D .CC � C�/d 3xd3v

Here, we introduced the number of collisions that replenish (CC) or deplete (C�),
the volume of phase space d3xd3v around .x; v/.

Let us consider the collision of two gas particles of velocity v and w respectively.
Following the wording of Vincenti and Kruger (1965), we shall call these particles
of class v and w respectively, to emphasize that we are not dealing with a specific
particle. Conservation laws during collision impose

�
v C w D v0 C w0
1
2
v2 C 1

2
w2 D 1

2
v02 C 1

2
w02 (11.20)

We may first note that the 6 components of the pair of vectors .v0;w0/ cannot be
computed from the four previous equations. Two other constraints are necessary
to derive the post-collision parameters: conservation of angular momentum, which
determines the plane of the trajectories, and the impact parameter b, which
determines the relative positions of the trajectories (see Fig. 11.6). When these
quantities are given then v0 and w0 can be expressed as functions of v and w.
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Fig. 11.6 The trajectory of two colliding particles with a potential of interaction in 1=r . Note that
even in this case of a long range potential, the part of the trajectory which is curved is small. b is
the impact parameter

To derive an expression for CC and C�, we need to evaluate the number of
collisions. For that, we shall start with the depleting collisions and consider a particle
of class w. It is facing a beam of particles of class v of intensity

I D nvkv � wk :

We recall that the intensity I is the number of particles crossing a unit surface per
unit of time. Here nv is the density of class-v particles. When the beam hits the
particle of class w, it is scattered and a fraction of the incident particles are deviated
within the solid angle d˝ around the direction n. Their number is

I�.n/d˝

where �.n/ is the differential cross section . A class-w particle therefore scatters

nvkv � wk�.n/d˝

class-v particles in the solid angle d˝ . These particles thus leave class v. Since
there are nwd

3x class-w particles in the volume d3x, the number of particles finally
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scattered per unit time is

nvnwkv � wk�.n/d˝d3x

Since nv D f .v/d 3v and nw D f .w/d 3w, we find that the number of depleting
collisions is

C�d3vd3x D d3vd3x
Z
d3w

Z
4�

f .v/f .w/kv � wk�.v;wjv0;w0/d˝ (11.21)

In this expression we replaced the scattering direction n by the quantities that
governs its value, namely the velocities before and after the collision.

We need now to evaluated the CC, which is the number of collisions that
replenish the velocity range Œv; v C d3v�. For that we need to consider the inverse
collisions which start from .v0;w0/ and lead to .v;w/ for all the possible w.
Following the foregoing reasoning, we consider a particle of class w0 scattering
particles of class v0 with a beam of intensity

I 0 D nv0kv0 � w0k :

This beam impacts the nw0d3x particles of class w0 located in d3x. The number of
collisions which generate particles of class v and w is

nv0kv0 � w0k�.v0;w0jv;w/d˝nw0d3x

where �.v0;w0jv;w/ is the cross section of this type of collisions. Noting that nv0 D
f .v0/d 3v0 and nw0 D f .w0/d 3w0, we derive the following expression of CC:

CCd3vd3x D d3v0d3x
Z
d3w0

Z
4�

kv0 � w0k�.v0;w0jv;w/f .v0/f .w0/d˝ :

There we just integrated over w0. We may have thought that the value of v0 is not
fixed either since the constraint is to produce a pair of particles of class .v;w/.
But from the relations between velocities in a collision (11.20), we see that if v is
fixed and w free, then only v0 or w0 is free the other being fixed (up to collisions
parameters like b that are taken into account in the cross section).

We shall now rewrite CC taking into account the invariants of binary elastic
collisions. We first note that the symmetry t= � t of these collisions implies

�.v0;w0jv;w/ D �.v;wjv0;w0/

in other words that the collision and the inverse collision have the same cross
section. We can also show that (11.20) implies that the norm of the relative velocities
is unchanged by a collision:

kv � wk D kv0 � w0k
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Lastly, from (11.17) applied to a phase space with two particles, the volume d3vd3w
is unchanged for a hamiltonian system. Hence

d3vd3w D d3v0d3w0

We are now in a position to give CC the following new expression:

CC D
Z
d3w

Z
4�

kv � wk�.v;wjv0;w0/f .v0/f .w0/d˝

Gathering the parts of the collision integral we now write Boltzmann equation,
which controls the evolution of the distribution function:

Df

Dt
D
Z
d3w

Z
4�

kv � wk �f .v0/f .w0/ � f .v/f .w/� �.v;wjv0;w0/d˝
(11.22)

As may be observed this equation is a nonlinear integro-differential equation.
This equation is not universally valid and can be used when the following

conditions are met:

1. The gas is dilute: binary collisions are dominant and the only ones taken into
account. This is correct when the volume occupied by the particles is small
compared to that occupied by the gas. In the framework of the van der Waals
model, the co-volume b must be negligible. To fix ideas, let us consider air in
normal conditions at 300 K and 105 Pa. The mean radius of a molecule of N2 or
O2 is around 0.24 nm while the numerical density of particles is n 	 2:4 � 1025
m�3. The parameter measuring the dilution is therefore nr3w 	 3� 10�4 which is
very small indeed.

2. The effective interaction between particles is of short range so that the concept
of collision is relevant.

3. There is no correlation between v and w: the distribution of particles of class
v and w are independent so that the number of collisions is proportional to
f .v/f .w/. In other words, there is no memory of collisions in the statistics.

4. The distribution function f does not vary on a scale shorter than the mean free
path nor on a time less than the collision time.

11.4.2 Thermodynamic Equilibrium

Before pursuing our route to the equations of fluid dynamics, we shall briefly stop
on the question of how Boltzmann equation describes thermodynamic equilibrium.
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In this case the distribution function is independent of space and time variables.
We may also consider the gas being free of any force field. In such conditions

@f

@t
D 0; rf D 0; F D 0 H) Df

Dt
D 0 H) C D 0

Z
d3w

Z
4�

kv � wk �f .v0/f .w0/� f .v/f .w/
�
�.v;wjv0;w0/d˝ D 0

The result is that the collision integral is vanishing. One may then show, see the
appendix at the end of the chapter, that the solution of this integral equation is unique
and is the famous Maxwell–Boltzmann distribution:

f0.v/ D n

 m

2�kT

�3=2
e� mv2

2kT (11.23)

as we would have expected.

11.4.3 The Mean Free Path

Taking advantage of our knowledge of the collision integral we may have a closer
look at the mean free path of atoms or molecules in a gas at equilibrium.

The concept of mean free path does really make sense if the concept of collision
is relevant for the description of the interaction between the gas particles. In this
case we may just focus on the model of rigid elastic spheres. There is no unique
definition of the mean free path (cf. Chapman and Cowling 1970). Generally, the
following definition is adopted. If nc is the number of collisions per unit volume
and unit time, then nc=n is the number of collisions faced by a particle. n=nc is the
mean fraction of the time unit between two collisions for a gas particle. If u is the
mean velocity of the particles then we may define the mean free path ` as

` D nu

nc
(11.24)

where u is given by (11.3). The expression of nc is given by the summation of C�
(or CC since it is identical to C� at equilibrium) over all the possible values of v.
Hence, we get

nc D
Z
d3v

Z
d3w

Z
4�

f0.v/f0.w/kv � wk�.v;wjv0;w0/d˝ (11.25)
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where f0 is the equilibrium distribution, namely that of Maxwell–Boltzmann.
Integration over d˝ is straightforward because the integrant is independent of the
angle between v and w. The integral gives the cross section of rigid spheres that is

Z
4�

�.v;wjv0;w0/d˝ D �d2

where d is the diameter of the spheres (let us recall that the centres of the spheres
cannot be closer than a diameter of the sphere, see Fig. 11.2).

Using Maxwell–Boltzmann distribution we get

nc D �d2n2

 m

2�kT

�3 Z
d3v d3w kv � wk e� m

2kT .v
2Cw2/

However, because of the term kv � wk, we have to change variables in order to
derive the expression of the integral. We set

g D v � w and G D v C w
2

where we introduced G the velocity of the centre of mass of the colliding particles.
One may verify that

v D G C g
2

and w D G � g
2

The jacobian of this change of variables is unity. Indeed, changing variables

dvxdwx D jdetŒJ �jdgxdGx

where the jacobian matrix is

ŒJ � D
 
@Gx
@vx

@gx
@vx

@Gx
@wx

@gx
@wx

!
D
�
1
2
1

1
2

�1
�

from which we find jdetŒJ �j D 1. Consequently d3vd3w D d3g d3G since this is
the same for each component. In addition we have:

v2 C w2 D 2G2 C g2

2

Hence we get

nc D �d2n2

 m

2�kT

�3 Z 1

0

4�g3e� mg2

4kT dg
Z 1

0

4�G2e�mG2

kT dG
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Using the expressions of integrals of the products of a polynome and a Gaussian
(cf. section “Gaussian Integrals” in appendix of Chap. 12), we obtain the number of
collisions within a gas during a unit of time:

nc D 4n2d2
r
�kT

m
(11.26)

The expression of the mean free path follows from the use of the mean veloc-
ity (11.3). Hence,

` D 1p
2�d2n

(11.27)

11.5 Equations of Fluid Flow as Mean-Field Equations

Thanks to the foregoing section we have now the appropriate tools to investigate the
expressions of microscopic transport like viscosity or heat diffusivity. However, the
path is not short and a few steps are still in order before retrieving Navier–Stokes
equation.

11.5.1 Mean Quantities

The distribution function that we introduced allows us to know the statistical
distribution of velocities of gas particles inside a fluid element of volume d3x.
Macroscopic quantities are then averages over the velocities. Thus

�.x; t/ D
Z

mf .x; t; v/d 3v

wherem is the mass of the gas particles. Indeed, the integral

Z
f .x; t; v/d 3v � n.x; t/

is just the numerical density n of particles.5

5In some textbooks like Vincenti and Kruger (1965), a normalized distribution function is used; it
is such that

R
f .x; t; v/d3v D 1 which is more practical in some cases.
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The fluid velocity is the mean velocity of gas particles namely

V D hvi D
R
f vd3vR

fd3v
(11.28)

or

n.x; t/V.x; t/ D
Z
f .x; t; v/vd3v

equivalent to the expression of momentum per unit volume:

�V D
Z
mvfd3v

We shall also need the expression of internal heat. In the frame of the dilute gas
model, internal heat is just the kinetic energy of particles in the local frame moving
with the fluid. Hence

n.x; t/e.x; t/ D
Z
1

2
.v � V.x; t//2f .x; t; v/d 3v (11.29)

11.5.2 Equation for a Quantity Conserved by Collisions

Quantities conserved during collisions are highly interesting. These are mass,
momentum and kinetic energy also called collisional invariants. The first moments6

of Boltzmann equation gives the evolution of their mean values, which is precisely
what we are looking for. In addition, the conservation of mass, momentum and
kinetic energy implies that the first moments (of order 0, 1 and 2) of the collision
integral are zero, namely

Z
vC.x; t; v/d 3v D 0

and obviously

Z
mC.x; t; v/d 3v D

Z
1

2
v2C.x; t; v/d 3v D 0

We shall not prove these mathematical equalities, which we consider as physically
obvious (but see Vincenti and Kruger 1965, for a demonstration).

6The definition of the order n moment of a statistical distribution is given in Chap. 9 (9.3).
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11.5.2.1 Mass Conservation

Mass conservation follows from the zero-order moment, with respect to velocity, of
Boltzmann equation:

Z
.v/0

Df

Dt
d3v D

Z
.v/0Cd3v

where obviously .v/0 D 1. From the properties of the collision integral, we therefore
have Z

Df

Dt
d3v D 0

Making explicit the operatorD=Dt we obtain:

@

@t

Z
fd3v C

Z
v � rxfd3v C

Z F
m

� rvfd3v D 0

We note that v � rxf D r x � .f v/ because x and v are independent variables. If we
assume that the force field F felt by the particles is independent of v then

Z
F � r vfd3v D

Z
rv � .fF/d 3v D

Z
.S/

fF � dS1 D 0

because the distribution function is such that limv!1 f .v/ D 0. Finally, we get:

@n

@t
C r � .nV/ D 0 (11.30)

If we multiply this equation by the mass of the gas particles, we retrieve the usual
equation of mass conservation:

@�

@t
C r � .�V/ D 0

11.5.3 Equation for Momentum

The next moment with respect to velocity of Boltzmann equation gives the
equation of the mean momentum of particles and therefore leads to the equation
of momentum for fluid particles. For the i -th component of the velocity we have

Z
vi

Df

Dt
d3v D 0

@

@t

Z
vi fd

3v C
Z

viv � r xfd3v C
Z

vi
F
m

� rvfd3v D 0
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Observing that vi is an independent variable, just like t and x, we find that the first
term may be written as

@

@t

Z
vi fd

3v D @

@t
n hvii D @t .nVi /

while the next term also reads
Z

vivj @j fd3v D @j .n
˝
vivj

˛
/

As before we assume that the force field bathing the gas particles does not depend
on their velocity. We can then rewrite the last term as:

1

m

Z
Œr v � .vi fF/� fF � r vvi � d

3v

Here too the integral of the divergence vanishes because the distribution function
decreases fast enough at infinity. The remaining term may be worked out as follows:

1

m

Z �
�f Fj @

@vj
vi

�
d3v D 1

m

Z ��f Fj ıji
	
d3v D � 1

m
n hFi i

The mean field of the force applied to the particles appears. The equation of mean
momentum finally reads:

@t .nVi /C @i .n
˝
vivj

˛
/ D n hFi i =m (11.31)

We observe that n hFi i is just the force per unit volume that we called f in Chap. 1
(1.22).

In order to retrieve the equation of momentum of Fluid Mechanics we have
to introduce the fluid velocity, that is the mean velocity of the gas particles. We
therefore set

v D hvi C u D V C u

where u is the velocity of the particles in the frame associated with the fluid particle.
We deduce that

˝
vivj

˛ D ViVj C ˝
uiuj

˛

which allows us to transform (11.31) into

@t .�Vi /C @i .�ViVj / D �@j .�
˝
uiuj

˛
/C fi
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or, using mass conservation,

�
DV i

Dt
D @j �ij C fi (11.32)

We give to this equation the same form as that of (1.25) which allows us to find the
expression of the stress tensor:

�ij D �� ˝uiuj ˛ (11.33)

The equation of momentum generates a new quantity:
˝
uiuj

˛
, which is the one-

point correlation of the particle velocity. We’ll have to express this quantity as
a function of other macroscopic quantities, namely derive the rheological law of
the gas. However, unlike with the pure macroscopic approach of Chap. 1, we shall
be able to express the microscopic transport (here viscosity) as a function of the
parameters of the model. Before that we need to write down the equation associated
with kinetic energy.

11.5.4 Kinetic Energy

Just like m and v, the second moment of Boltzmann equation has no contribution
from the collision term, thus

Z
1

2
v2
�
@f

@t
C v � r xf C F

m
� r vf

�
d3v D 0

which can be written as

@

@t
.
n

2
hv2i/C rx �


n
2

hv2vi
�

C 1

2

Z �
r v �

�
f v2F
m

�
� fF

m
� r vv2

�
d3v D 0

and simplified into

@

@t


n
2

hv2i
�

C rx �

n
2

hv2vi
�

� nF
m

� V D 0

or else

@

@t


�
2

hv2i
�

C rx �

�
2

hv2vi
�

D V � f (11.34)

We may give a more familiar shape to this equation by introducing the vector

Fi D 1

2
�hu2ui i
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and by remembering that specific internal energy reads (see also 11.29)

e D 1

2
hu2i :

We first observe that

hv2vi i D V 2Vi C 2huiuj iVj C hu2iVi C hu2uii

and that

1

2
�hv2vii D

�
1

2
V 2 C e

�
�Vi � �ijVj C Fi

Using mass conservation we can transform (11.34) into

�
D

Dt

�
1

2
v2 C e

�
D �r � F C @i .�ijVj /C f � v

which is identical to (1.23). Thus doing we derive the formal expression of the heat
flux of microscopical origin, namely

F D 1

2
�
˝
u2u

˛
(11.35)

It arises as a triple correlation of the particle velocities or as the microscopic flux of
kinetic energy.

11.6 Continuous Media, Perfect Fluids and Ideal Gases

At this stage, we may contemplate how the continuous medium arose: it is an
average over the velocity space of some moments of the distribution function.
Hence, although the continuous medium is unveiling now through mean quantities,
the real mathematical step was accomplished when we admitted the existence of
the distribution function. In fact we admitted that the local statistical properties of
the particles making the fluid vary continuously and thus define a continuum that is
supposed to reproduce all the properties of the fluid.

Before proceeding, we shall first examine the case of thermodynamic equilib-
rium. Thus, we first consider the case where the distribution function f is the
maxwellian one f0 as given by (11.23).

In this case the heat flux is exactly zero because
˝
u2ui

˛ D 0 as a consequence
of (12.36). Besides, and for the same reason, all the off-diagonal components of˝
uiuj

˛
are zero. We may also check that hu2xi D hu2yi D hu2zi, meaning that the three
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directions of space are equivalent, betraying the isotropy of the fluid. This property
implies

hu2xi D hu2yi D hu2z i D 1

3
Trhuiuj i D hu2i

3

Finally, at equilibrium

F D 0 and �ij D �� hu2i
3
ıij

Identifying the terms of this expression with the macroscopic form of the stress at
equilibrium, namely �ij D �pıij, we deduce the expression of pressure

p D �
hu2i
3

(11.36)

If we use the Maxwell–Boltzmann distribution function, which characterizes ther-
modynamic equilibrium, from (11.4) we get

p D �
kT

m

which is just the equation of state of ideal gases.
As may be expected, strict thermodynamic equilibrium implies no microscopic

transport. To find viscosity or heat conductivity, we thus need to go further and
consider non-equilibrium situations.

11.7 Gas Dynamics in a Newtonian Regime

11.7.1 Towards Navier–Stokes

While using a macroscopic description of matter (see Chap. 1), we learnt that
transport coefficients measure the way the system is modified when external
circumstances bring it out of equilibrium. To derive these coefficients we therefore
only need to determine how the distribution function is modified when a small
perturbation arises. We therefore write

f D f0 C ıf

where f0 is the Maxwellian distribution. As an example, let us consider the heat
flux. We have

Fi D 1

2
�

Z
u2ui fd

3v D 1

2
�

Z
u2ui ıfd

3v (11.37)



436 11 Beyond Fluid Mechanics: An Introduction to the Statistical Foundations of Gas. . .

since the contribution of f0 is zero. We therefore need to evaluate the deviation of
f with respect to equilibrium.

11.7.2 The BGK54 Model and the Theory of Chapman–Enskog

In order to get acquainted with the way of deriving the equation of the continuous
medium from that verified by the distribution function we need not deal with the
full Boltzmann equation, which is very complicated as we already underlined. For a
first pedagogical approach we propose to consider a simplified version of Boltzmann
equation, namely the equation of Bhatnagar et al. (1954), where the collision integral
is abruptly replaced by a damping term:

@f

@t
C v � rf C F

m
� r vf D �f � f0

�
(11.38)

Here � is the relaxation time, which is a model parameter. This modeling of the
collision integral respects the vanishing moments of the integral due to collisional
invariants (m, v and v2). This model gives the same equations for the fluid but of
course transport coefficients will be different.7

If we leave aside the force field F , which is useless for the derivation of diffusion
coefficients, and if we note that the distribution function varies on macroscopic
scales L, we can write (11.38) like

"

�
@f

@Qt C Qv � Qrf
�

D �f C f0 (11.39)

with

" D �V

L

where V is a typical fluid velocity. Tilded quantities are dimensionless. If the
gas is weakly out of equilibrium, the relaxation time is that of the equilibrium
configuration, namely of the order of a few collision time which is very short
compared to the macroscopic advection time L=V so that "  1. One may expand
the solution of (11.39) in powers of this small parameter, i.e.

f D f0 C "f1 C "2f2 C � � �

7The BGK model was proposed by Bhatnagar et al. (1954) to explore in a simplified way flows
where the continuum approximation is no longer relevant, for instance in the case of very diluted
gases where the Knudsen number (cf. 1.1) is no longer small compared to unity.
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The expansion is usually referred to as the Chapman–Enskog expansion after the
pioneering work of Sydney Chapman (1888–1970) and David Enskog (1884–1947)
who derived independently (in 1916 and 1917 respectively) and for the first time the
correct expressions of the transport coefficients from Boltzmann equation.

We observe that the first term f1 describing the first order perturbation to
equilibrium reads

� f1 D @f0

@Qt C Qv � Qrf0 D @f0

@Qt C Qvi Q@if0 (11.40)

If we go back to dimensional quantities, we note that to first order of perturbations
we simply have

ıf D ��
�
@f0

@t
C vi @if0

�
(11.41)

where f0 is the local maxwellian distribution given by:

f0.x; v; t/ D n.x; t/
�

m

2�kT.x; t/

�3=2
exp

�
�
�
m.v � V.x; t//2

2kT.x; t/

��
(11.42)

In this expression, we explicitly wrote the dependence of f0 with respect to time and
space coordinates. We observe that this dependence comes from that of the density,
temperature and mean velocity of the fluid.

With (11.41) and (11.42), we can evaluate the correlations appearing in (11.37)
and (11.33). For instance, the first term is

@f0

@t
D @f0

@n

@n

@t
C @f0

@T

@T

@t
C @f0

@Vi

@Vi

@t

with

@f0

@n
D f0

n

@f0

@T
D f0

T
Q3=2.u

2/ and Q3=2.u
2/ D mu2

2kT
� 3

2

@f0

@Vi
D f0

mui
kT

Repeating this calculation with the other terms, we find

@f0

@t
C v � rf0 D f0

�
@ ln n

@t
C vk@k lnnCQ3=2.u

2/

�
@T

@t
C vk@kT

�

C mui
kT

�
@Vi

@t
C vk@kVi

��
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We again separate mean values and fluctuations for the velocity vi D Vi C ui , and
get

@f0

@t
C v � rf0 D f0

�
D ln �

Dt
CQ3=2.u

2/
D ln T

Dt
C mui
k�T

@k�ik

Cuk@k ln �CQ3=2.u
2/uk@kT C muiuk

kT
@kVi

i

where we used the equation of mean momentum (11.32). Now, observing that �ik D
�pıik because viscous terms are of higher order in ", and that lnp D ln �C ln T C
Cst, we obtain

@f0

@t
C v � rf0 D f0

�
D ln �

Dt
CQ3=2.u

2/
D lnT

Dt
CQ5=2.u

2/uk@k lnT C muiuk
kT

@kVi

�

where Q5=2 D Q3=2 � 1. Using the energy equation at zeroth order (without heat
diffusion) and mass conservation, we may still simplify the foregoing expression
into

ıf D ��f0
�
Q5=2.u

2/uk@k lnT C m

kT

�
uiuk � u2

3
ıik

�
@kVi

�
(11.43)

We have now the expression for the disturbance of the distribution function at
hands. We can now focus on the calculation of the various moments that lead to
viscosity and heat diffusion coefficients. Let us start with the heat flux.

11.7.3 Expression of the Heat Flux and of Thermal
Conductivity

When evaluating hu2uii, we observe that only terms with odd powers in (11.43)
contribute to this average so that only the first term of (11.43) need to be considered.
We get

Fi D �m�
2T

�Z
u2Q5=2.u

2/uiukf0d
3u
�
@T

@xk

The thermal conductivity tensor thus reads

�ik D m�

2T

Z
u2Q5=2.u

2/uiukf0d
3u
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However, only diagonal terms are non-zero. In addition they are all the same. We
can therefore write:

�ik D �ıik and � D 1

3
TrŒ�� D �kk

3
D m�

6T

Z
u4Q5=2.u

2/f0d
3u

Using formulae on Gauss integrals (12.33 and following), we finally get the
expression of thermal conductivity:

� D 5

2

n�k2T

m
(11.44)

or, dividing by �cp , the expression of thermal diffusivity:

 D �kT

m
(11.45)

As expected, thermal conductivity is O."/ in the Chapman–Enskog expansion.

11.7.4 Viscosity

To derive the expression of viscosity we start from �ij

�ij D �� ˝uiuj ˛ D �m
Z

uiuj .f0 C ıf /d3u

We leave aside the zero order term which, as shown before, gives the pressure, and
focus on the next order term. Here, the second term of (11.43) is the only one that
contributes and we can write:

�visc
ij D m2�

kT

Z
uiuj

�
ukul � 1

3
u2ıkl

�
f0d

3u @lVk

or else

�visc
ij D Lijkl@lVk

where we introduced the fourth order tensor

Lijkl D m2�

kT

Z
uiuj

�
ukul � 1

3
u2ıkl

�
f0d

3u
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which already appeared in Chap. 1 when we were looking for rheological laws
(see 1.36). Now we have its explicit expression! From the shape of this tensor we
note that

Lijkk D 0 (11.46)

by contraction on the last two indices. We easily check that the general form is
indeed that given in Chap. 1 by (1.38), namely

Lijkl D 
.ıikıjl C ıjkıil/C �ıijıkl

because non-zero terms must have a pair of identical indices: F1212; F1122 for
example are non-zero while F1112 or F1231 are zero because at least one index cannot
be paired.

Considering the componentLijij with i ¤ j , we find


 D Lijij D m2�

kT

Z
u2i u

2
j f0d

3u D m2�

kT
n

�
kT

m

�2

from which we derive the dynamic and kinematic viscosities:


 D �nkT and � D �kT

m

We may also note that the second viscosity � is zero. Indeed, (11.46) implies that

Lijkk D 2
ıikıjk C 3�ıij D 0

setting for instance i D j D 1 we deduce that

2
C 3� D 0

since � D �C2
=3, we conclude that � D 0. This result is general for a gas that has
only translational degrees of freedom. Second viscosity originates in the relaxation
time needed to transfer energy between translational and rotational degrees of
freedom in diatomic gases (see Chapman and Cowling 1970, for instance).

Lastly, we note that with this model the Prandtl number of the gas is unity:

P D �


D �kT

m

m

�kT
D 1
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11.7.4.1 Conclusions

The foregoing results may look rather deceptive: all our efforts have lead to a Prandtl
number which is unity and to diffusion coefficient that are parametrized by an
unknown quantity! However, as we mentioned it before the BGK model was not
designed to give accurate values of diffusion coefficients but to study in a simpler
manner than with the Boltzmann equation, the flows that cannot be investigated with
the Navier–Stokes equation.

But the foregoing calculations are still interesting as they show us the way
of deriving the viscosity or the thermal conductivity of gases. Let us consider
Boltzmann equation and use the previous Chapman–Enskog expansion. We write
it in the following way

f D f0.1C ıf C � � � /

This new form of the disturbance ıf of the distribution function is a solution of

Z
d3w

Z
4�

�
ıf .v0/C ıf .w0/� ıf .v/� ıf .w/

	

�f0.v/f0.w/kv � wk�.v;wjv0;w0/d˝ D Df 0
Dt

to first order. This equation replaces (11.41): ıf is now the solution of an integral
equation where the right-hand side is already known and given by (11.43) (up to the
sign).

Solving the integral equation would need another few pages of analysis. The
usual way is to expand the solution on the basis of the so-called Sonine polynomials.
The interested reader may consult the textbooks given in reference at the end of the
chapter. Here we shall be satisfied with the result given by Vincenti and Kruger
(1965):


1 D 5
p
�mkT

8
�
m
4kT

�4 R1
0
g7�
.g/e�mg2=4kTdg

and �1 D 15

4

k

m

1 (11.47)

The index 1 appearing in the expression of the diffusion coefficients indicates
that these expressions have been derived taking into account the first term of the
polynomial expansion. The second term only gives a very small contribution. We
set

�
 D
Z
4�

�.˝/ sin2.2�/ d˝

� is the differential cross section of binary interactions. For rigid elastic spheres
�.˝/ D d2 cos � and �
 D 2�d2=3 (see exercises).
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Fig. 11.7 Function A2.˛/ sampled over the interval Œ4;C1Œ after Chapman and Cowling (1970)

For a monatomic gas cp D 5k=2m so that the Prandtl number is:

P D 
cp

�
D 2

3

which is now very close to the observed values. If we specify the interaction
potential between gas particles, we may give a more specific expression of the
dynamic viscosity at this level of approximation, namely:


1 D 5

16d2

r
mkT

�
(11.48)

for elastic rigid spheres of diameter d , and


1 D 5
p

mkT=�.2kT=˛a/2=˛

8A2.˛/� .4 � 2=˛/
(11.49)

for particles interacting through a power law potential:

V.r/ D a

r˛

� .x/ is the gamma function andA2 is a tabulated function that is plotted in Fig. 11.7.

11.7.5 Comparison with Experiments

To fully appreciate the foregoing results, it is useful to go back to experiments.
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First we may be pleased that theory gives a value of the Prandtl number that is
close to the observed values (see Table 11.1). The theoretical approach also says that
kinetic energy is slightly more efficiently transported than momentum. As shown
by Table 11.1 this effect is rather independent of the nature of the gas and related to
statistics.

Expression (11.48) now gives a precise formula (the neglected terms in the
expansion contribute only to a few percents) for the viscosity of a gas represented
by elastic rigid spheres. Comparing this expression to the approximate one (11.10),
we have


1 D 5

16d2

r
mkT

�
D 5�

32

�
2

�3=2d 2

p
mkT

�

We deduce that the coefficient ˇ� of the qualitative model reads:

ˇ� D 5�

32
' 0:491

Besides, the elastic rigid sphere model predicts a
p
T law with respect to

temperature. In Fig. 11.8, we plotted the measured variations of the dynamic
viscosity of helium between 15 K and 	1,000 K. We note that these variations are
rather well represented by a power law 
 / T s with s ' 0:647. Viscosity increases
faster than

p
T when temperature increases. Using the rigid sphere model, we may

interpret this result by saying that it shows a decrease of the effective radii of helium
atoms with increasing temperature. This is not surprising: at higher temperatures
collisions are harder and the minimum distance between atoms is lower, implying a

Fig. 11.8 Variations of
helium viscosity with
temperature (solid line and
“C”). the dashed line shows
the power law T 0:647. The
discrepancy between this
power law and experimental
data is less than 3 % (data are
from Chapman and Cowling
1970)
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smaller effective radius for a rigid sphere. The dependence of viscosity with 1=d2

leads to a faster growth (compared to
p
T ) with T .

Let us now use a more realistic potential of interaction such as the following one:

V.r/ D a

r˛

where a is positive (repulsive potential). Equation (11.49) shows that this type of
potential implies a power law dependence of viscosity with an exponent related to
that of the potential by

s D 1

2
C 2

˛

If we use the experimental value of s for helium, we get ˛ ' 13:6. Back to (11.49),
we can also deduce the value of a of the potential.

Even if the foregoing results do not predict a value of viscosity without adjustable
parameters, they are still very interesting: we see that a power law potential
of interaction may represent to a few percents the variations of viscosity with
temperature and as a result gives us a first approximation of the effective potential of
interaction between two colliding helium atoms. Deriving such a potential from first
principles, namely from quantum mechanics, is difficult. We also see that through
the temperature variations of the diffusion coefficients we may glimpse at some
parameters of the microscopic world.

11.8 Conclusions

In this chapter we have seen how the diffusion coefficients such as viscosity or
thermal conductivity emerge from the microscopic characteristics of a gas and
especially from the interaction between its atoms or molecules.

We discovered how the combination of experimental results on temperature
variations of viscosity with those of the theory can be used to derive some
information on the potential of interaction between gas particles. Thus, looking for
the statistical foundations of Fluid Mechanics, we immediately face the complexity
of the microscopic world: as soon as we look at the temperature variations of
viscosity, the rigid elastic spheres model appears too simple.

However, the foregoing approach of fluid dynamics using distribution functions
is not restricted to fluids in a state slightly off the thermodynamic equilibrium. As
the reader may have guessed when we introduced the BGK model, the knowledge
of the distribution function permits the exploration of flows where fluid particles are
far away from the equilibrium. One such regime is that of Knudsen where the mean
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free path is not small compared to the proper scales of the flow.8 The dynamics
of rarefied gases is the source of numerous problems: as we noticed, Boltzmann
equation has its own limitation, boundary conditions that are met by such flows are
not obvious, etc. These questions still motivate many investigations, both on the
experimental/observational and theoretical sides.

11.9 Exercises

1. If I is the intensity of a particle beam (number of particles crossing a unit surface
per unit time), I�.˝/d˝ is the number of particles scattered in the solid angle
d˝ by a target of differential cross section �.˝/. If the target is a ball of diameter
d hit by balls of the same diameter, show that the cross section of a ball is �d2.

2. Give the cross section associated with momentum transfer �
 D R
�.˝/

sin2.2�/d˝ where � is defined in Fig. 11.2.
3. Eucken relation. Assuming that viscosity and thermal conductivity are of the

following form:


 D 1

2
�v` and � D 5

4
�cvv`

a) Show that the relation between 
, � and cv is

� D 5

2
cv
 (11.50)

b) Express the Prandtl number as a function of the adiabatic index � D cp=cv.
c) We now separate the heat capacity due to translational degrees of freedom

from those due to other degrees of freedom, namely

cv D ctrans
v C cint

v

8A classical example of such flows is the one surrounding a spacecraft entering the atmosphere.
At a height of 120 km the mean free path of air molecules is of the order of a metre. The flow
around a space shuttle (wing span of 24 m) is no longer computable with solutions of Navier–
Stokes equation. Other examples of such flows includes those of epitaxy by molecular jets that is
used to make thin metallic layers in micro-electronic components.
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We assume that the thermal conductivity can be written in the same way and
that the part associated with translation verifies (11.50). Show that the Prandtl
number is now given by Eucken’s relation:

P D 4�

9� � 5
(11.51)

Compare this value for a diatomic gas with that measured for air Pair D 0:714.

Appendix: Maxwell–Boltzmann Distribution

When a gas relaxes towards equilibrium, its distribution function relaxes towards
the well-known Maxwell–Boltzmann distribution. One may derive its expression
from thermodynamic considerations, but it is interesting to show that it is also the
unique solution of the Boltzmann equation for a collisional gas at thermodynamic
equilibrium.

The most direct demonstration of this result leans on Boltzmann H-theorem
which says that the quantity

H.t/ D
Z
f .r; t; v/ ln f .r; t; v/d 3rd3v (11.52)

cannot increase for an isolated system.

Boltzmann H-Theorem for an Isolate Gas in a Box

In order to demonstrate Boltzmann H-theorem in the case of a gas enclosed in a box,
it is handy to consider the quantity

h.r; t/ D
Z
f .r; t; v/ lnf .r; t; v/d 3v

whose temporal derivative is

@h

@t
D
Z
.1C lnf /

@f

@t
d3v (11.53)
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@f

@t
is given by Boltzmann equation (11.22). We thus have to compute three integrals:

A D
Z
.1C ln f /v � rx fd3v (11.54)

B D
Z
.1C ln f /

F
m

� r vfd3v (11.55)

C D
Z
.1C ln f /d3v

Z
d3w

Z
4�

kv�wk �f .v0/f .w0/ � f .v/f .w/
�
�.v;wjv0;w0/d˝

(11.56)

The first integral may be rewritten as

A D
Z �

@j
�
.1C ln f /f vj

� � @j .f vj /
	
d3v D @j

Z
f lnf vj d

3v D r � Q

where we introduce the current

Q D
Z

vf ln fd3v

If we assume that the force F does not depend on the velocity the second integral
B is zero because it may be transformed into a surface integral at infinite velocity
where the distribution function is vanishing (see the example of the derivation of
mass conservation 11.30). Hence

B D 0

The remaining integral C is associated with collisions. Let us rewrite it as follows:

C D
Z
d3vd3w.1C ln f .v//

Z
4�

kv�wk �f .v0/f .w0/ � f .v/f .w/
�
�.v;wjv0;w0/d˝

We note that v and w are integration variables that can be exchanged. Hence, C
may also be written as

C D
Z
d3vd3w.1Cln f .w//

Z
4�

kv�wk �f .v0/f .w0/ � f .v/f .w/
�
�.v;wjv0;w0/d˝

Adding the two expressions of C , we get a third one where the roles of v and w are
perfectly symmetric:

C D 1

2

Z
d3vd3w .2C ln Œf .v/f .w/�/

�
Z
4�

kv � wk �f .v0/f .w0/ � f .v/f .w/� �.v;wjv0;w0/d˝ (11.57)
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Lastly, as we did when deriving the expression of CC for the collision integral, we
rewrite the foregoing expression inverting the direction of collisions. The foregoing
integral C must remain unchanged because the integration is over all the possible
values of v and w and thus of all possible values of v0 and w0. Thus doing we
rewrite (11.57) as:

C D 1

2

Z
d3v0d3w0 �2C ln

�
f .v0/f .w0/

	�

�
Z
4�

kv0 � w0k �f .v/f .w/� f .v0/f .w0/
�
�.v0;w0jv;w/d˝

Now, we may use the collisional invariants

�.v0;w0jv;w/D �.v;wjv0;w0/; kv�wk D kv0�w0k; d 3vd3w Dd3v0d3w0

which give to C the new following form:

C D 1

2

Z
d3vd3w

�
2C ln

�
f .v0/f .w0/

	�

�
Z
4�

kv � wk �f .v/f .w/� f .v0/f .w0/
�
�.v;wjv0;w0/d˝

This new form can be added to (11.57) and leads to a fully symmetric expression of
C :

C D 1

4

Z
d3vd3w

Z
4�

d˝
�
ln Œf .v/f .w/� � ln

�
f .v0/f .w0/

	�

� �f .v0/f .w0/� f .v/f .w/
� kv � wk�.v;wjv0;w0/ (11.58)

This last expression shows that C is always negative. Indeed, all the terms in the
integrant are positive except

�
f .v0/f .w0/� f .v/f .w/� �ln Œf .v/f .w/� � ln

�
f .v0/f .w0/

	�

which may be rewritten

f .v0/f .w0/.1 � X/ lnX with X D f .v/f .w/=Œf .v0/f .w0/�

However, for all X > 0, .1 �X/ lnX is less than zero. Hence, we establish that

C � 0 (11.59)
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Back to (11.53), we rewrite this equation as:

@h

@t
D �r � Q C C

and integrate it over the volume occupied by the gas. With the boundary conditions
on the velocity, i.e. v � n D 0 on the walls, the first term disappears and we deduce

dH

dt
D
Z
.V /

Cd3r ” dH

dt
� 0

which is Boltzmann H-theorem.
We may remark that we can define Boltzmann entropy fromH with the following

formula

S.t/ D �kH.t/C Cst

From the H-theorem, entropy is an increasing function of time. We here demonstrate
the second principle of thermodynamics for this kind of systems (an isolated
assembly of colliding particles).

The Maxwell–Boltzmann Distribution

The H-theorem indicates that at thermodynamic equilibrium

dH.t/

dt
D 0

or
R
Cd3r D 0. From the previous expressions this integral is zero if and only if

�
f .v0/f .w0/� f .v/f .w/

�
�
ln Œf .v/f .w/� � ln

�
f .v0/f .w0/

	� D 0 ” X D 1

which means that

f .v/f .w/ D f .v0/f .w0/

or that

ln f .v/C lnf .w/ D lnf .v0/C lnf .w0/ (11.60)

This equality shows that when the gas is at equilibrium, ln f .v/ verifies a conserva-
tion law in collisions just as momentum or kinetic energy. Since it cannot be other
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collisional invariants independent of energy and momentum (that would constrain
in an impossible manner the collisions), ln f .v/ is necessarily a linear combination
of kinetic energy and momentum.9 Thus we write

ln f .v/ D Av2 C B1vx C B2vy C B3vz C C

where A, B1, B2, B3, C are constants.
Without loss of generality we can rewrite this expression as follows:

lnf .v/ D �A.v � v0/2 C lnK

or

f .v/ D Ke�A.v�v0/2

where A > 0 since the distribution function must be integrable.
We are now getting closer to the Maxwell–Boltzmann distribution and the loop

will be closed when the constants are identified. For that, we note that numerical
density of gas particles is:

n D
Z
f .v/d 3v D K


�
A

�3=2

while v0 can be identified to the mean velocity. Indeed,

hvi D 1

n

Z
vf .v/d 3v D K

n

Z
.v�v0/e�A.v�v0/2d 3vC v0

n

Z
Ke�A.v�v0/2d 3v D v0

Let us now assume that this mean velocity is zero, then the mean kinetic energy is
given by

hv2i D 1

n

Z
v2f .v/d 3v D K

n

Z
v2e�Av2d 3v D 3K�3=2

2nA5=2

With the foregoing expression of n we deduce:

hv2i D 3

2A

9The reader who prefers a mathematical demonstration of this result may find it in the book of
Kennard (1938).
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But the expression (11.36) of pressure shows that

p D �

2A

Since we should find here the equation of state of the ideal gas, we identify the
constant A to

A D m

2kT

We find again the relation between absolute temperature and the mean kinetic energy
of gas particles:

1

2
mhv2i D 3

2
kT

Further Reading

There is an abundant literature of the dynamics of rarefied gases since the first
important results go back to the beginning of the twentieth century. The curious
reader may consult the monograph of Chapman and Cowling (1970) which remains
a reference in the field. The textbook of Vincenti and Kruger (1965) gives a
pedagogical account of the subject. A rapid presentation of the subject may be found
in the theoretical Physics course of Landau and Lifchitz (Lifchitz and Pitaevskii
1981). More recently, two books of Carlo Cercignani (Cercignani 1988; Cercignani
et al. 1994) propose a more mathematical discussion of Boltzmann equation and of
its applications. For French readers the book of Noëlle Pottier (Pottier 2007) gives
a presentation of gas kinetics in the wider context of nonequilibrium phenomena.
Lastly, the reader may read the introduction of the paper of Venkattraman and
Alexeenko (2012) to have a glimpse at nowadays investigations in the field of
transport coefficients in rarefied gases.
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Chapter 12
Complements of Mathematics

12.1 A Short Introduction to Tensors

The idea of tensors arose when physicists started dealing with forces inside elastic
solids (tensions lead to tensors). Mathematically speaking, tensors are multilinear
forms. For instance, the scalar product between two vectors is a bilinear form:

ı W .a;b/ �! a � b D
3X
iD1

aibi

This is an application which associates a scalar with two vectors (hence bi-) and it
is linear with respect to each vector. The foregoing expression could be rewritten
using the components of the unit tensor, namely ıij, like:

ı W .a;b/ �! ı.a;b/ D
3X
iD1

3X
jD1

ai ıijbj

This is the same as above since ıij D 0 when i ¤ j and ıii D 1. Very often theP
symbol is dropped, and Einstein notations are used: repeated indices meaning

summation. Using these notation ı.a;b/ D ai ıijbj . However, ıijbj D bi thus
ı.a;b/ D ai bi .

To simplify the presentation of these notions, we stay in the metric space R3 with
an orthonormal basis. This means that the notion of variance, namely contravariant
and covariant tensors, is not useful at all. So the place of indices (up or down) is
not meaningful here. We just use the Einstein convention of implicit summation on
repeated indices. Thus,

ai bij means
3X
iD1

ai bij
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12.1.1 Definitions

A multilinear form f may be simply defined by

f .X1;X2; : : : ;Xn/ D
X

i1;i2;:::;in

fi1;i2;:::;inX
1
i1
X2
i2
: : : Xn

in

where the summation runs from 1 to 3 in a three-dimensional space. The set

ffi1;i2;:::;in=i1 D 1; 2; 3; i2 D 1; 2; 3; : : : in D 1; 2; 3g

is the set of the 3n components of the nth-order tensor Œf �. Very often, one calls,
abusively,fi1;i2;:::;in a tensor, while this is only one of its components.

With the foregoing definition, we observe that a zeroth order tensor is a scalar
and a first order tensor is a vector.

12.1.1.1 Notations

The cartesian coordinates are often denoted (x1; x2; x3). The vectors are denoted v
and their components vi . Tensors of order greater or equal to 2 are denoted Œa� and
their components aij:::.

The gradient of a scalar function f is rf and its components are:

.rf /i � @f

@xi
� @if

12.1.1.2 Contraction

The contraction of two indices is the summation over these two indices. For
instance, the contraction of index i and j of the second order tensor aij gives aii

which is the trace of the tensor: aii DTr[a]. We may note that r � v D @ivi is also
the trace of the velocity gradient tensor.

12.1.1.3 The Tensorial Product of Two Vectors

From vectors one can construct tensors of higher order. This operation is called the
tensorial product and usually denoted ˝. For example, from the velocity vector v,
we can build the Reynolds stress tensor �Œv ˝ v� whose components are �vivj .
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12.1.2 �ijk

To ease operations using the cross product, one uses the set of numbers �ijk which
are defined as follows:

�ijk D 1 if ijk is an even permutation of 123
�ijk D �1 if ijk is an odd permutation of 123
�ijk D 0 if two indices are identical

This is not a tensor but a pseudo-tensor often called the completely antisymmetric
pseudo-tensor. It may indeed also be defined from a determinant:

� W R3 �! R

.a;b; c/ 7�! �ijkaibj ck D Det.a;b; c/

� is a pseudo-tensor because the sign of the determinant depends on the orientation
of the basis. This is also the reason why the determinant is often called a pseudo-
scalar, and the cross product a pseudo-vector.

In the following we give some useful relations for the manipulation of �ijk:

�ijk�lmn D ıilıjmıkn C ıklıimıjn C ıjlıkmıin � ıklıjmıin � ıjlıimıkn � ıilıkmıjn

D
ˇ̌
ˇ̌̌
ˇ
ıil ıjl ıkl

ıim ıjm ıkm

ıin ıjn ıkn

ˇ̌
ˇ̌̌
ˇ (12.1)

�ijk�klm D ıilıjm � ıimıjl (12.2)

�ikl �jkl D 2ıij (12.3)

�ijk�ijk D 6 (12.4)

Here are also the relation between some expressions using vectors and the same
expressions using tensorial notation:

a � b D aibi

.a � b/i D �ijkaj bk

det.a;b; c/ D �ijkaj bkci

If [A] is a symmetric tensor, then Aij D Aji and

�ijkAjk D 0 (12.5)
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because terms cancel two by two. A more detailed and more formal presentation
may be found in textbooks of Hladik (1993), Bass (1978) or Lebedev et al. (2010).

12.2 The Divergence Theorem

12.2.1 Statement and Demonstration

If Ti1i2���in is a tensorial field of order n, smooth enough so that derivatives are
defined, then

Z
.S/

Ti1i2���ik ���indSik D
Z
.V /

@ikTi1i2���ik ���indV (12.6)

where the first integration is taken over the surface S surrounding the volume
V . This relation is true in a space of dimension n � 1, but we shall give its
demonstration only in the two-dimensional space (a plane). Its generalization to
a higher dimension is straightforward (Fig. 12.1).

We first write the volume integral under the form:

Z
.V /

.@xAx C @yAy/dxdy D
Z ymax

ymin

.Ax.xC/� Ax.x�//dy

C
Z xmax

xmin

.Ay.yC/ �Ay.y�//dx

x

y

ymax

ymin

xmax

xmin

Fig. 12.1 The various quantities needed in the demonstration of the divergence theorem
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where x˙.y/ and y˙.x/ are the curves defining the boundary of the “volume”. Let
us concentrate on one of the terms, for instance Ay.yC/dx. This term also reads

Ay.yC/ey � ndl

where n is the outward normal unit vector and dl is the “surface” element. Thus,

Ay.yC/dx D .Ay.yC/ey/ � dS

but yC defines the upper part of the surface while y�.x/ defines the lower part.
Together, when x runs from xmin to xmax, y� and yC describe the whole surface. We
may therefore write

Z xmax

xmin

.Ay.yC/� Ay.y�//dx D
Z
.S/

.Ayey/ � dS

where we noted that �Ay.y�/dx D �.Ay.y�/ey/ � .�n/dl D .Ayey/ � dS.
Then, we follow the same reasoning for the other half of the integral finally getR

.S/
AidSi . QED

12.2.2 Corollary

Similarly we may show the following relation:

Z
.S/

�j ikmTi1i2���ik ���indSm D
Z
.V /

�j ikm@mTi1i2���ik ���indV (12.7)

12.2.3 A Few Consequences

The general result (12.6) has some interesting specific cases. In the usual three-
dimensional space, we find again some classical formulae if we set the tensor ŒT � to
a scalar, a vector or a second order tensor, namely:

Z
.S/

fdS D
Z
.V /

rf dV (12.8)

Z
.S/

A � dS D
Z
.V /

r � A dV

Z
.S/

Œa�dS D
Z
.V /

DivŒa� dV
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The corollary (12.7) allows us to write:

Z
.S/

A ^ dS D �
Z
.V /

r � A dV (12.9)

In a two-dimensional space, volumes are surfaces and surfaces are contours, hence:

I
.C /

f dl n D
Z
.S/

rf dS

I
.C /

A � n dl D
Z
.S/

r � A dS

I
.C /

A � n dl D �
Z
.S/

r � A dS

where n is the unit outward normal vector to the contour C .

12.3 Radius of Curvature

12.3.1 For a Plane Curve

The radius of curvature of a plane curve defined parametrically by the functions x.t/
and y.t/ is the radius of the osculating circle at the given point. It may be computed
as follows.

Let M be a point of the curve and M C dM another point infinitely close to M
and on the same curve. If these two points also belong to the same osculating circle,
then their distance is Rd� where d� is the angle between the vectors that are tangent
to the curve in M andM C dM. Thus we have:

Rd� D
p

Px2 C Py2dt (12.10)

where the dot means the derivative with respect to t . In addition

d� ' sin d� D � .T � .T C dT// � ez

kTk kT C dTk

” d� ' � .T � dT/ � ez

kTk2
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where T is the tangent vector. Noting that

T

ˇ̌̌
ˇ Px

Py ; dT

ˇ̌̌
ˇ Rxdt

Rydt
and d� D � Px Ry � Py Rx

Px2 C Py2 dt

(12.10) leads to the result:

1

R
D Rx Py � Ry Px
. Px2 C Py2/3=2 (12.11)

For a curve defined by the equation y D y.x/, then

1

R
D � Ry

.1C Py2/3=2 (12.12)

12.3.2 For a Curve in Space

Now, if the curve is defined in a three-dimensional space by its parametric equation
Œx.s/; y.s/; z.s/�, then we define the tangent vector as:

es D 1p Px2 C Py2 C Pz2

ˇ̌
ˇ̌
ˇ̌

Px.s/
Py.s/
Pz.s/

The curvature radius R is defined as:

@es
@s

D n
R

(12.13)

where n is a unit normal vector to the curve. The radius R is a positive number.
Finally, one then introduce the binormal vector eb , which defines, with es and n,

the Frenet frame. It is defined as

@n
@s

D eb
T

The length T is called the torsion.
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12.4 The Boundary Layer Theory Viewed from Differential
Equation Theory

We introduced in Chap. 4 the idea of boundary layers, basing our approach on
physical considerations to find out the various possible balances of forces. We
stressed the physical existence of this layer when we presented its destabilization
that induces rapid variation of the drag coefficient Cx. However, the notion of
boundary layer has deep roots in the theory of differential equations. Here, we shall
briefly sketch out these ideas, but we strongly encourage the reader to have a look to
the book of Bender and Orszag where many aspects of this technique are detailed.

One of the various ways of solving differential equations is to use the theory of
singular perturbations. To illustrate this theory we readily take an example, namely
the differential equation:

"
d2y

dx2
C .1C "/

dy

dx
C y D 0 (12.14)

where " is a small parameter. If we consider the terms factoring " as a perturbation
of an original equation where " D 0, then this perturbation is said to be singular
because the order of the differential equation is not the same when " D 0 and " ¤ 0.
This is said to be singular because the change of order leads to the appearance of a
singularity when " tends to zero.

Let us now study in more detail the example given by (12.14), which we complete
by boundary conditions so as to fully determine the solution. We choose

y.0/ D 0 and y.1/ D 1 (12.15)

(12.14) is a second order differential equation with constant coefficients. Its
solutions are (in the general case) a linear combination of exponentials. Thus, we
find:

y.x/ D e�x � e�x="

e�1 � e�1=" (12.16)

This solution is already quite interesting as it reveals the singularity which arises
when " goes to zero. The solution is discontinuous at the origin. In addition, when
"  1, the solution varies very rapidly near this point (see Fig. 12.2). We see the
presence of a boundary layer!

We shall now retrieve the solution (12.16) through a perturbative approach
similar to the one we used for the boundary layer analysis. We need four steps:

1. First step: we determine the outer solution (outside the boundary layer). We set
" D 0 and we solve. However, we face a first difficulty: We have two boundary
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Fig. 12.2 A plot of the function y.x/ D .e�x � e�x="/=.e�1 � e�1="/ for " D 0:02. The vertical
dotted line shows the separation between the inner and outer regions

conditions for a first order differential equation. We have to dismiss one of the
boundary conditions. In this case, the choice is quite simple since one of the
boundary conditions is in the boundary layer. Thus we take the other one, namely
y.1/ D 1. Of course, this choice is not always so simple, and some trial and error
is sometimes required.
We thus solve:

y0 C y D 0 with y.1/ D 1

The solution is ye.x/ D e1�x . Let us point out that this is the solution we would
have obtained if we had let " ! 0 in the solution (12.16) for x ¤ 0.

2. The second step is to determine the solution in the boundary layer. For this, we
use the stretched coordinate � D x=" (the boundary layer coordinate) and we
rewrite the differential equation using �:

y00 C .1C "/y0 C "y D 0

Again, we let " ! 0 and find:

y00 C y0 D 0

This new differential equation is of second order and needs two boundary
conditions. One of them is obvious: at x D 0, y D 0. We do not specify
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the second one at the moment and leave the constant undetermined. Thus, the
boundary layer solution is

ybl D C.1� e��/ (12.17)

where C is an arbitrary constant. We note that this solution can be derived from
the exact solution (12.16) by making the change of variable x ! � and letting
" ! 0.

3. The third step is the asymptotic matching between the two previous solutions.
We need to find an interval where both solutions are valid. In the present case,
this is where:

"  x  1 (12.18)

In this interval, the two functions ye and ybl must tend to the same limit. Hence

lim
�!1ybl D lim

x!0
ye D e

This fixes the constant C D e.
4. The last step is to gather all the foregoing “pieces” and construct the function that

solves the problem in the whole interval. This function is identical to ye when
x � " and equals ybl when x � ". It is obtained by the combination:

yunif D ye C ybl � e D e1�x � e1�� (12.19)

The solution yunif .x/ is said to be the uniform approximation at order n if, in the
given interval,

yunif .x/ � y.x/ D O."nC1/ when " ! 0

We may observe that in our example jyunif .x/ � y.x/j is O.e�1="/ which is
less than any power of ". Our approximation is therefore valid at “infinite” order,
however it always differs from the exact solution by an undetermined O.e�1="/
quantity. This last point underlines the fact that the boundary layer theory is a theory
of singular perturbations and not of regular perturbations.

12.5 The Sturm–Liouville Problem

The Sturm–Liouville problem is usually enounced in the following way:
Let three functions p.x/; q.x/ and w.x/, continuous and defined on the interval

Œa; b� � R, such that p.x/ > 0, q.x/ � 0 and w.x/ > 0 in the whole interval. The
Sturm–Liouville problem is the following boundary value problem:

.py0/0 � qy C �wy D 0 (12.20)
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where the solution y.x/ verifies the boundary conditions:

y.a/ D 0 or y0.a/ D 0; y.b/ D 0 or y0.b/ D 0 (12.21)

It may be shown that the solutions of this problem form a denumerable suite of
eigenfunctions yn associated with real eigenvalues �n.

Two eigenfunctions associated with two distinct eigenvalues are orthogonal with
respect to the scalar product:

hf jgi D
Z b

a

f .x/g.x/w.x/dx

Indeed, let ym and yn be two solutions associated respectively with �m and �n, then

.py0
m/

0 � qym C �mwym D 0

.py0
n/

0 � qyn C �nwyn D 0

Multiplying the first equation by yn and the second by ym, integrating and
subtracting the two equations, one finds:

.�m � �n/hymjyni D �
ym.wy0

n/� ym.wy0
n/
	b
a

D 0

where we used the boundary conditions at a and b. Since �m ¤ �n, hymjyni D 0.
This property of the Sturm–Liouville problem is at the origin of spectral methods

for solving numerically differential equations. The unknown solutions are expanded
on the basis formed by a set of functions solution of a Sturm–Liouville problem.

When one deals with a problem of stability, the sign of the real part of the
eigenvalues is important. In a Sturm–Liouville problem, it can be determined quite
easily. Multiplying (12.20) by y and integrating over Œa; b�, one gets:

� D
R b
a
.py02 C qy2/dxR b

a
y2wdx

showing that all the eigenvalues are positive. A slightly more general result can be
obtained if we note that w.x/ < 0 in the whole interval, then all the eigenvalues are
negative. A more complicated case is when w changes sign in the interval. It can be
shown then that the eigenvalue spectrum spans from �1 to C1.

A complete study of the Sturm–Liouville problem may be found in the book of
Ince (1956).
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12.6 Second Order Partial Differential Equations

12.6.1 The Different Types

Second order partial differential equations are classified in four categories: they
are either of hyperbolic, parabolic, elliptic or mixed type. They are categorized
according to a property of the coefficients of the second order derivatives. The most
general form of this kind of equation is:

A.x; y/
@2f

@x2
C B.x; y/

@2f

@x@y
C C.x; y/

@2f

@y2
C � � � D 0

where the dots are for the first and zeroth order terms. The function D.x; y/ D
B2 � 4AC determines the type of the equation. If in the whole domain where f is
defined,

• D.x; y/ > 0, the equation is hyperbolic
• D.x; y/ D 0 the equation is parabolic
• D.x; y/ < 0 the equation is elliptic

If D.x; y/ changes sign in the domain, the equation is said to be of mixed type.
To be more familiar with the basic properties of these types of equations, we shall

focus on three very classical examples: the wave equation, the heat equation and the
Laplace equation. All these equations are met in Fluid Mechanics.

As a first step, we need to introduce the notion of characteristics.

12.6.2 An Introduction to Characteristics

Let f .x; y/ be a function defined on a plane (or in a domain of a plane) and verifying

A.x; y/
@f

@x
CB.x; y/

@f

@y
D 0 (12.22)

The characteristic curves are the curves where f is constant, namely where:

df D @f

@x
dx C @f

@y
dy D 0 (12.23)

Using (12.22) and (12.23), we derive the equation of characteristics:

dy

dx
D B

A
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The solution of this equation together with the boundary conditions permits, in some
cases, a complete determination of f . Let us take an example of this favourable case.
We assume that f .x; 0/ D cos x, A.x; y/ D y and B D 1. The characteristics are
such that:

y
dy

dx
D 1 H) y D ˙p2.x CK/; x � �K; K 2 R

This is a family of parabola with Ox as their axis. Any point of the plane belongs
to a unique characteristics and the value of f there just depends on the constant K
defining the characteristics:

f .x; y/ D f

�
1

2
y2 � x

�

The boundary condition f .x; 0/ D cos x determines the function and we obtain the
searched solution:

f .x; y/ D cos

�
1

2
y2 � x

�

We may observe that the boundary condition on the x-axis, f .x; 0/ D cos x, has
been propagated in the whole plane. If the y-coordinate is replaced by the time, then
we have a true propagation. This property is verified by all the equations having
characteristics.

12.6.3 A Hyperbolic Equation: The Wave Equation

The equation of a wave propagating at the velocity c is given by:

@2f

@x2
� 1

c2
@2f

@t2
D 0

The general solution of this equation is well-known:

f .x; t/ D ˚.x � ct/C �.x C ct/

where˚ and� are two arbitrary functions to be determined by the initial conditions.
This solution is easily obtained after the change of variable: u D x � ct and v D
x C ct.
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The solution is fully determined if we take into account the initial conditions. For
instance, we may demand:

f .x; 0/ D cos x and

�
@f

@t

�
0

D 0

which leads to

f .x; t/ D 1

2
Œcos.x � ct/C cos.x C ct/�

Initial conditions are necessary to determined completely the solution. With these
conditions the problem is well posed. To emphasize the importance of these
conditions, let us try the exercise where, instead of imposing the value of the
function and its time-derivative at an initial time, we impose the value of the function
at two different times. For instance:

f .x; 0/ D I.x/ and f .x; T / D F.x/

where I.x/ and F.x/ are given data. Such a problem is mathematically ill-posed.
These conditions, which look like boundary conditions are not sufficient to fully
determine the solution. It is easy to show that �.x/ verifies:

�.x/ D �.x C 2cT/C I.x/� F.x C cT/

It means that � is undetermined in the interval Œ0; 2cT�. This kind of problem is
faced when one tries to solve Poincaré equation (8.25) in general fluid domains.

12.6.4 A Parabolic Equation: The Diffusion Equation

The diffusion equation has the following general form:

@C

@t
D �C

where C is the concentration of a chemical element, for instance, and  is its
diffusion coefficient in the fluid.

To make things as simple as possible, we reduce this problem to one space
dimension. C.x; t/ is therefore determined by

@C

@t
D 

@2C

@x2
(12.24)
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Since this equation is of first order in time we just need one initial condition, namely
C.x; 0/ D C0.x/.

The general method to solve this kind of equation is to use the Laplace transform:

QC.x; p/ D
Z 1

0

C.x; t/e�ptdt

The diffusion equation (12.24) changes into:

@2 QC
@x2

� p


QC D �C0.x/



We shall solve this equation in the very simple case where C0.x/ D C0 cos kx. The
general solution is then

QC.x; p/ D C0 cos kx

p C k2
C Ae�p

p
 x C Be

p
p
 x

If the solution is finite at ˙1 then A D B D 0. We thus obtain the solution C.x; t/
by the Mellin–Fourier formula:

C.x; t/ D
Z cCi1

c�i1
T0 cos kx

p C k2
eptdp

which leads to:

C.x; t/ D C0 cos kxe�k2t

This solution shows us that the initial state described by C0.x/, decreases exponen-
tially on a time scale 1=.k2/ or �2=4�2 if � is the wavelength associated with k.
This is the same result as the one we found when studying the diffusion of vorticity
with (4.5).

Let us now consider the case where the initial conditions do not contain any
specific length scale (contrary to the foregoing example). In this case, one looks for
a self-similar solution. If C.x; t/ is a solution of (12.24), we look for a condition
such that C1.x; t/ D C.Lx; T t/ is also a solution. Reporting C1 into (12.24) and
using the fact that C is a solution leads to:

@C1

@t
D T 

L2
@2C1

@x2

Since L and T are arbitrary, we may choose L D p
T . C1 is also a solution for

any T . Choosing T D 1=t , we find C1.x=
p
t ; 1/ � c.x=

p
t /. The solution only
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depends on a single variable � D x=
p
t called the self-similarity variable.1 c.�/ is

a solution of the differential equation:

c00.�/ D ��c0.�/=2

whose general solution is

c.�/ D A erf

�
�

2
p


�
C B

where A et B are constants and erf is the error function.2 Let us take the example
where c.x; t/ is such that:

x > 0 c.x; 0/ D 0 and c.0; t/ D c0

We find that

c.x; t/ D c0

�
1 � erf

�
x

2
p
t

��
(12.25)

This example corresponds to the one-dimensional diffusion of a contaminant from
a source with a unit concentration (see Fig. 12.3). This solution can of course be
determined by the standard method using the Laplace transform. We may note that
the iso-concentration lines, where c.x; t/ DCst, move towards C1 proportionally
to the square root of time. This law is typical of diffusion phenomena.

12.6.5 An Elliptic Equation: The Laplace Equation

12.6.5.1 Some General Properties

Laplace equation is the equation of potentials, which we find in electrostatics,
magnetostatics, irrotational fluids, classic gravitation, etc. We met it several times
either in perfect fluids (irrotational flows) or in very viscous ones (creeping flows).
Thus, it is useful to know some of its basic properties.

1This kind of solution is used to solve the Prandtl equation describing boundary layer flows (see
Sect. 4.3.6).
2erf is the error function defined by

erf.x/ D 1p
�

Z x

0

e�u2du

that is to say as the integral of a Gaussian (erf(1)=1).
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This equation reads:

�f D 0 (12.26)

It is a linear equation and its solutions are the harmonic functions. This equation
contains no scale: if f .r/ is a solution then f .r=L/ is also a solution. Scales only
appear through the boundary conditions (the size of the domain) (Fig. 12.3).

If f and g are two harmonic functions, then

r � .f rg/ D rf � rg

Integrating this equation over a volume V , bounded by a surface S characterized by
the outward normal vector n, we have

Z
.S/

f rg � dS D
Z
.V /

rf � rg dV (12.27)

Let us now assume that f or n � rf are vanishing on the bounding surface and let
us use (12.27), namely

Z
.S/

f rf � dS D
Z
.V /

.rf /2dV (12.28)

Fig. 12.3 Time evolution of
the concentration according
to (12.25). The various curves
represent the solution at
increasing time, the time
difference being the same
between one curve to the
next. Note how they get
closer with time because of
the

p
t-law
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From the boundary conditions met by f , the foregoing equation implies:

rf D 0

everywhere in V , so that f is a constant in the volume V .
This result leads to the unicity of the solutions of Laplace equation. Indeed, let

f1 and f2 be two solutions of this equation verifying the same boundary conditions,
then g D f1 � f2 is also a solution of Laplace equation and meets the boundary
condition g D 0 or n � rg D 0. g is therefore a constant and if on a given point
of the surface g D 0, this constant is zero. Thus, f1 et f2 are different at most by a
constant. If f is a potential of a vector field, like the electric field E D rf , we see
that the value of the constant has no importance and that the field is unique.

Laplace equation can be solved in several geometries. Here, we shall detail only
two cases: the spherical geometry and its two-dimensional counterpart, the plane
polar geometry.

12.6.5.2 The Method for Solving Laplace Equation

One classical way to solve Laplace equation is to try to separate the variables: If x
and y are the coordinates in a plane, one looks for solutions of the form:

V.x; y/ D f .x/g.y/

We thus form a Laplace product. Using this type of solutions leads to

�V D 0 H) 1

f

@2f

@x2
C 1

g

@2g

@y2
D 0

The two parts of the equation depends on two different variables. Their sum can be
zero if and only if they are both constants. Let A be this constant, hence:

d2f

dx2
D �Af and

d2g

dy2
D Ag

If A > 0 then

V.x; y/ D B cos.
p
Ax C �/ sh .

p
Ay C �/

The four constants A;B; �; � are arbitrary. Thus we have at our disposal an infinite
number of solutions that can be linearly combined. The boundary conditions are
then used to fix the values of the constants and determine the unique final solution.

To illustrate this method, we study two examples that are met in Fluids Dynamics.
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12.6.5.3 Solutions in Polar Coordinates

In these coordinates the Laplacian reads:

�V D 1

r

@

@r

�
r
@V

@r

�
C 1

r2
@2V

@�2

We thus write Laplace products as V D F.r/G.�/ and find:

r

F

@

@r

�
r
@F

@r

�
D C and

1

G

d2G

d�2
D �C

We may readily restrict the possible values of the constant C by demanding the
periodicity of the solutions with respect to � , namely G.�/ D G.� C 2�/. We
therefore set C D n2, n being an integer. Hence,

G.�/ D ein� and F.r/ D rn

Thus, in the present case, we may write the solution of Laplace equation, in the
following form:

V.r; �/ D
nDC1X
nD�1

Anr
nein� (12.29)

Here the constant An are determined by the boundary conditions.
We may note that rnein� is just zn if z D x C iy. In other words, the foregoing

solution is also the expansion in Laurent series of a function of a complex variable
with an essential singularity at the origin. The solution (12.29) may also be
expressed as

V.r; �/ � V.z/ D
nDC1X
nD�1

Anz
n

In fact V.z/ is analytic, i.e. dV=dz exists, except at the origin and any analytic
function is a solution of Laplace equation.

We demanded that the solution be periodic in � but if V.r; �/ is a potential
this condition can be relaxed and replaced by the periodicity of the field rV .
The solution can include the solutions which follow when C D 0. In this case,
F.r/ D P ln rCQ andG.�/ D R�CS from which we derive the following linear
combination V D a� ln r C b� C c ln r C d . If rV is periodic then we need to set
a D 0. With complex number, we may rearrange this expression under the form:
A ln z C B ln z� where z� is the complex conjugate of z.
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12.6.5.4 Solutions in Spherical Geometry

In spherical geometry the solution of Laplace equation are obtained in the same way
but now the Laplace products are F.r/G.�/H.'/. The developments are a bit more
complicated, but lead to the construction of the spherical harmonics which replace
the ein� in the previous solution. The spherical harmonics Y m` .�; '/ are also the
eigenfunctions of the horizontal (reduced to �; �) Laplacian operator. If we assume
that the potential can be expanded on the basis of spherical harmonics (which indeed
form a complete basis for all functions defined on the sphere), we can write:

V.r; �; '/ D
`D1X
`D0

mDC`X
mD�`

V `
m.r/Y

m
` .�; '/

then, from (12.45) we get:

�V D 1

r2
@2

@r2
.rV /C ��'V

r2

and

1

r2
d2

dr2
.rV `/� `.`C 1/

r2
V ` D 0 (12.30)

since

��'Y
m
` D �`.`C 1/Y m` (12.31)

The solutions of (12.30) are powers of r , namely rn with n D ` or n D �` � 1.
Finally

V.r; �; '/ D
`D1X
`D0

mDC`X
mD�`

.A`mr
` C B`m=r

`C1/Y m`

These kind of solutions are used when the problem is close to sphericity.

12.7 Exercises

1. From (12.1) show the relations (12.2), (12.3) and (12.4).
2. Show the equivalence between the symmetry of a second order tensor and the

relation (12.5).
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3. Show that the harmonic oscillator equation

d2y

dx2
C �y D 0

with boundary conditions y.0/ D 0 and y.1/ D 0, is a Sturm–Liouville problem.
Determine the eigenvalue spectrum.

Appendix: Formulae

Gaussian Integrals

We set

In.˛/ D
Z 1

0

xne�˛x2dx (12.32)

where ˛ > 0 et n ¤ 0.
We thus find

I0.˛/ D
p
�

2˛1=2
; I1.˛/ D 1

2˛
(12.33)

With the following equality

InC2.˛/ D �dIn
d˛

(12.34)

we get:

I2.˛/ D
p
�

4˛3=2
; I3.˛/ D 1

2˛2

I4.˛/ D 3
p
�

8˛5=2
; I5.˛/ D 1

˛3

I6.˛/ D 15
p
�

16˛7=2
; I7.˛/ D 3

˛4

or else

I2n>0 D
Z 1

0

u2ne�˛u2du D 1 � 3 � 5 � � � � � .2n � 1/

2nC1

r
�

˛2nC1 (12.35)
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The symmetry of the gaussian function with respect to the origin implies that

Z C1

�1
x2pC1e�˛x2dx D 0; 8p 2 N (12.36)

Some Formula of Vectorial Analysis

The following formulae may be demonstrated using tensorial notations:

�a D rr � a � r � r � a (12.37)

r � .f a/ D a � rf C f r � a (12.38)

r � .f a/ D rf � a C f r � a (12.39)

r � .a � b/ D b � r � a � a � r � b (12.40)

r � .a � b/ D ar � b � br � a C .b � r /a � .a � r /b (12.41)

r.a � b/ D a � r � b C b � r � a C .a � r/b C .b � r /a (12.42)

r .v � v/ D 2v � r � v C 2.v � r /v (12.43)

The Operators in Various Coordinate Systems

Cylindrical Coordinates .s; '; z/

r f D

ˇ̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ

@f

@s

1

s

@f

@'

@f

@z

r � v D

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌

1

s

@vz

@'
� @v'

@z

@vs
@z

� @vz

@s

1

s

@sv'
@s

� 1

s

@vs
@'

�v D

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌

�vs � vs
s2

� 2

s2

@v'
@'

�v' � v'
s2

C 2

s2
@vs
@'

�vz

�f D 1

s

@

@s

�
s
@f

@s

�
C 1

s2
@2f

@'2
C @2f

@z2
; r � v D 1

s

@svs
@s

C 1

s

@v'
@'

C @vz

@z
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.a � r /b D

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ

.a � r/bs � a'b'

s

.a � r/b' C a'bs

s

.a � r/bz

.v � r/v D

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
ˇ̌̌
ˇ

.v � r /vs � v2'
s

.v � r /v' C vsv'
s

.v � r /vz

Remark
1

s

@

@s

�
s
@f

@s

�
� f

s2
D @

@s

�
1

s

@sf

@s

�
(12.44)

Spherical Coordinates .r; �; '/

rf D

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌

@f

@r

1

r

@f

@�

1

r sin �

@f

@'

r � v D

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌

1

r sin �

@

@�
.sin �v'/� 1

r sin �

@v�
@'

1

r sin �

@vr
@'

� 1

r

@rv'
@r

1

r

@rv�
@r

� 1

r

@vr
@�

�v

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌

�vr � 2

r2

�
1

sin �

@.sin �v� /

@�
C 1

sin �

@v'
@'

C vr

�

�v� C 1

r2

�
2
@vr
@�

� v�
sin2 �

� 2 cos �

sin2 �

@v'
@'

�

�v' C 1

r2

�
2

sin �

@vr
@'

C 2 cos �

sin2 �

@v�
@'

� v'
sin2 �

�

where the Laplacian of a scalar field reads

�f D 1

r

@2rf

@r2
C 1

r2 sin �

@

@�

�
sin �

@f

@�

�
C 1

r2 sin2 �

@2f

@'2
(12.45)

and

r � v D 1

r2
@

@r
.r2vr /C 1

r sin �

@ sin �v�
@�

C 1

r sin �

@v'
@'
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.a � r /b D

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
ˇ̌̌

.a � r /br � a�b� C a'b'

r

.a � r /b� C a�br � a'b' cot �

r

.a � r /b' C a'br C a'b� cot �

r

The Stress-Tensor of a Newtonian Fluid

Cylindrical Coordinates

�ss D �P C 2

@vs
@s

C .� � 2=3
/r � v

�'' D �P C 2


�
1

s

@v'
@'

C vs
s

�
C .� � 2=3
/r � v

�zz D �P C 2

@vz

@z
C .� � 2=3
/r � v

�s' D 


�
1

s

@vs
@'

C @v'
@s

� v'
s

�

�sz D 


�
@vz

@s
C @vs
@z

�

�'z D 


�
@v'
@z

C 1

s

@vz

@'

�

Spherical Coordinates .r; �; '/

�rr D �P C 2

@vr
@r

C .� � 2=3
/r � v

��� D �P C 2


�
1

r

@v�
@�

C vr
r

�
C .� � 2=3
/r � v

�'' D �P C 2


�
1

r sin �

@v�
@'

C vr
r

C v� cot �

r

�
C .� � 2=3
/r � v
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�r� D 


�
1

r

@vr
@�

C r
@

@r


v�
r

��

�r' D 


�
1

r sin �

@vr
@'

C r
@

@r


v'
r

��

��' D 


�
1

r sin �

@v�
@'

C sin �
@

@�


 v'
r sin �

��

Further Reading

An introduction to tensors may be found in Lebedev et al. (2010). The theory of
singular perturbations, which is very useful to the study of boundary layers, may
be found in various books, for instance in Bender and Orszag (1978) or O’Malley
(1991). As far as partial differential equations are concerned, there are also a wealth
of textbooks, from the classical Courant and Hilbert (1953) or, more recently,
Dautray and Lions (1984–1985) or Zwillinger (1992). This last book also deals with
all types of ordinary differential equations.
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Chapter 13
The Solutions of Exercises

Chapter 1

1. The solution is 2�; the velocity field of a solid rotation has a uniform vorticity.
2. One finds that all the components of [s] are zero. The solid body rotation does not

introduce any deformation. If v D �r then sxx D syy D szz D � and sxy D sxz D
syz D 0. A solid body rotation can be the velocity field of an incompressible
fluid because Tr.Œs�/ D 0 , but the second velocity field cannot because it is not
divergence-free.

3. We just need using the definition of the divergence. For the reciprocal, we observe
that

r � v D 0 ” @vx
@x

C @vy
@y

D 0 ” vx D �
Z
@vy
@y

dx D � @

@y

Z
vydx

showing that the stream function exists and we just need to choose

 D �
Z

vydx

In polar coordinates, we easily find that

vr D 1

r

@ 

@�
; v� D �@ 

@r

while for an axisymmetric flow in cylindrical coordinates

vr D 1

r

@ 

@z
; vz D �1

r

@ 

@r
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4. The mass of a volume moving with the fluid is constant. The integral of
@�

@t
C r � .�v/ is therefore always zero what ever the volume, hence we find the

continuity equation again.
5. We have six equations

@xvx D @yvy D @zvz D 0

@xvy C @yvx D @yvz C @zvy D @zvx C @xvz D 0 (13.1)

The first three show that

vx � vx.y; z/; vy � vy.x; z/; vz � vz.x; y/

The last three lead to

@2yvx D @2z vx D 0

with similar expressions for vy and vz. We derive that

8<
:

vx D a1yz C b2y C c1z C d1
vy D a2xz C b3z C c2x C d2
vz D a3xy C b1x C c3y C d3

(13.2)

We use again relations (13.1) to show that a1 D a2 D a3 D 0 and c1 D �b1,
c2 D �b2, c3 D �b3. It implies that

vi D di � �ijkbj xk or v D d � b � r

which shows that the velocity field is composed of a translation and a solid body
rotation.

6. We start from the equation of kinetic energy (1.28) to which we add 1
2
v2 times

the continuity equation. We find

@1
2
�v2

@t
C r � .1

2
�v2v/ D vi @j �ij

We integrate this equation over the volume V . The integration of the second term
in the left-hand side gives zero since v � dS D 0, while the integral of the first
term is the time derivative of the kinetic energy. The third integral needs to be
transformed in the following way:

Z
V

vi @j �ijdV D
Z
V

@j .vi �ij/dV �
Z
V

�ij@j vidV
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Here, the first integral may be transformed into an integral over the bounding
surface, and therefore vanishes because of boundary conditions. The second
integral is just the viscous dissipation within the volume. Thus

dEc
dt

D �
Z
V

DdV

If the fluid is incompressible, using (1.48) gives the expected result.
7. We noticed that a biaxial extension can be derived from a uniaxial extension by

just changing the sign of the shear.
So we consider a biaxial extension characterized by a “shear time scale” equal
to �T . The associated velocity field is vx D �x=T; vy D �y=T; vz D 2z=T .
Using the definition of the biaxial viscosity, we find

�xx � �zz D �
EB.�T /=T : (13.3)

However, in order to use the definition of the uniaxial viscosity (1.79), we have
to exchange the axis x ! y, y ! z, z ! x. The velocity field is now vx D
2x=T; vy D �y=T; vz D �z=T . From (1.79) we get �xx � �yy D 2
E.T=2/=T .
Taking into account the exchange of the axis in (13.3) we also get �xx � �yy D

EB.�T /=T . The result follows.

Chapter 2

1. About buoyancy

(a) Let Mg be the mass of the ice and Vim the volume below the water level.
We also introduce the initial volume of water Vei , and the final volume of
water Vef , when the ice is melted. Since the container is the same initially and
finally, comparing the level of water is equivalent to comparing the volumes
Vei CVim and Vef . From Archimedes theorem, the equilibrium of the ice cube
means that

Mgg � �eVimg D 0 H) Mg D �eVim

where �e is the density of water. When the ice melts, it transforms into water
so that

Mg D �e.Vef � Vei / D �eVim

We therefore derive that Vei C Vim D Vef , showing that the level of water
remains identical when the ice melts.
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(b) The reasoning is the same as before, but introducing a piece of metal of mass
Mm, we now have:

.Mg CMm/g � �eVimg D 0

After the ice melting VF D Vef C Mm=�m, where VF is the final volume of
water plus that of the metal, which has to be compared to the initial volume
VI D Vei C Vim.

VI D Vei C .Mg CMm/=�e

from the first equation. But Mg D �e.Vef � Vei / is still true because the
melting ice gives water. Thus

VI D Vef CMm=�e > Vef CMm=�m D VF

because the density of metal �m is larger than the density of water �e . Hence,
the water level decreases.

(c) When the ice is melted, the cork is floating. Let V 0
im be its volume under the

water in the final state. Before the ice melts, the level of water in the glass is
given by the volume VI D Vei C.MgCMl/=�e , following the same reasoning
as above. Ml is the mass of the cork. Since the cork floats, its equilibrium
implies that V 0

im D Ml=�e . It is then easy to check that

VI D Vei C .Mg CMl/=�e D VF D Vef C V 0
im

since Mg D �e.Vef � Vei /. The level thus remains the same.
(d) This is because the air density decreases with altitude while that of water

remains approximately constant.
(e) The balloon moves towards the front of the car. Indeed, when the car starts,

the effective gravity has a small component towards the back of the car. The
buoyancy force therefore has a small component in the opposite direction,
namely towards the front. Do the experiment!

2.(a) The denser goes under the lighter (oil).
(b) P.z/ curve is made of two line segments of slope ��eg in the water and ��hg

in the oil.
(c) The ball being denser than oil but less dense than water will stay at the

interface of the two liquids. Although part of the ball is in the water and the
other part in the oil, Archimedes theorem can be used because the pressure
field is continuous everywhere over the ball. Thus

�woodVball D �oilVoil C �waterVwater
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Of course Vball D Voil C Vwater. It follows that

Vwater

Vball
D �wood � �oil

�water � �oil

Numerically Vwater=Vball D 3=4.
3. Let Hh be the height of the oil free surface, Hhe be the height of the oil–water

interface andHe the height of the free surface of water in the other branch of the
tube. We have Hh � Hhe D 2 cm and P.Hh/ D P.He/ D Patm. From Pascal
Theorem (2.5),

P.Hh/C �oil.Hh �Hhe/g D P.He/C �water.He �Hhe/g

which allows us to express He as a function of Hhe, namely He D
2 cm�oil=�water C Hhe. Now we need another equation. It is given by the fact
that the liquids are incompressible, therefore if the level moves of x cm in one
arm of the tube it moves of the same quantity in the other arm. ThusHe D H0Cx
and Hhe D H0 � x. This leads to x D �oil=�water D 0:6 cm and all the other
heights, usingH0 D 10 cm.

4.(a) The wood sphere being in equilibrium, the resultant of forces is vanishing,
thus

Mbg �
Z
.S/

PwaterdS C R D 0

where Mb is the mass of the ball and R is the reaction of the reservoir floor.
We therefore need to correctly evaluate the resultant of pressure forces. We
note that we cannot use the Archimedes theorem because pressure is not
continuous over the whole sphere surface. The integral needs to be computed
explicitly. We may note that the contribution of the air pressure is vanishing
since it is the same everywhere. We may note in addition that the resultant has
just one component along ez so that the evaluation of the integral may be done
as follows:

ez �
Z
.S/

PdS D �
Z �0

0

P.�/2�R sin � cos �Rd�

where �0 is such that sin �0 D r=R and cos �0 D �p1 � r2=R2; note the
cos � factor due to the projection on ez. The expression of P.�/ comes from
Pascal’s formula : P.�/ D g�waterŒH CR.cos �0 � cos �/�. It turns out that

ez �
Z
.S/

PwaterdS D g�water2�R
2

�
1

2
.HCR cos �0/ sin2 �0CR

3
.cos3 �0�1/

�
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The force exerted by the sphere on the floor of the basin is therefore

R D Mbg
�
1C �water

�

�
3

4

�
H

R
C cos �0

�
sin2 �0 C 1

2
.cos3 �0 � 1/

��

(b) Numerically: jRj = 170 N
(c) The sphere rises up before emerging at the surface. Indeed, this is determined

by the vanishing of the resulting force, namely when

H � Hc D 2R

3

1 � cos3 �0 � 2�=�water

sin2 �0
�R cos �0

But with Hc � R.1 � cos �/.
5.(a) The balloon takes off if its buoyancy is larger than its weight. We thus find

that .Mb CMH/=Vb < �0.
(b) The cruising altitude of the balloon is reached when its buoyancy compensates

its weight or, in other words, when its mean density equals that of the air
around, namely �b D .Mb C MH/=Vb . We thus find zflight D z0.1 �
�b=�0/

.��1/=�
6.(a) The hydrogen pressure is identical to that of the outside air.

(b) Air and hydrogen being assumed ideal gases, the equality of pressures and
temperatures implies that VH D manH=�a where nH is the mole number of
hydrogen, ma is the mass of an air mole and �a is the air density. Since �a
decreases with altitude, � increases with altitude.

(c) We just write that the buoyancy is larger than the weight so that �aVH � MbC
MH . Using the expression of the hydrogen volume and that MH D nHmH ,
we get the condition nH � Mb=.ma �mH/.

(d) The foregoing condition does not depend explicitly on the altitude so if
the amount of hydrogen does not vary, the balloon rises. It will not rise
indefinitely because, as we saw before, the volume of hydrogen increases with
the altitude. When it exceeds Vb D manH=�a, the balloon loses hydrogen.
The altitude of the balloon stabilizes at a value such that Vb D manH=�a
and nH D Mb=.ma � mH/. One then finds that the cruising altitude is
z D z0

�
1 � Œ�b=�0=.1�mH=ma/�

.��1/=��, which is quite close to the value
of the preceding problem.

7. We just need to compute the surface gravity, to which we withdraw the centrifu-
gal acceleration. We find g D GM=R2 D 24:8m/s2 and ˝2R = 2.25 m/s2. The
effective gravity is therefore ge D 22:5m/s2. The molecular mass of the gas is
M D 0:85 � 2C 0; 15 � 4 D 2:3 g/mole; cp = 3.35 R�. Finally, the gradient of
temperature is �g=cp D �1:9K/km.

8.(a) The axial symmetry of the system implies that the resultant of pressure forces
has just one component along ez, namely Fz D R

.S/
PdS � ez. We note that

dSz D 2� tan 2˛ .H � z/dz. Finally, Fz D ��gh2.H � h=3/ tan 2˛.
(b) If h D H then Fz D 2Mlg. We derive that if the mass of the funnel is smaller

than twice the liquid mass, the liquid can move the funnel up and flow away.
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9. A polytropic model of the Sun:

(a) We note that

dM

dr
D 4�r2�

The equation of state together with the equation of mechanical equilibrium
give

.1C 1=n/K�1=n�1 d�
dr

D �GM.r/

r2

After multiplication by r2 and taking the derivative, we introduce � and get:

1

r2
d

dr
r2
d�

dr
C 4�G�

1�1=n
c

.nC 1/K
�n D 0

Making the change of variable r D r0� we obtain Emden equation.
(b) We just need to insert the expression of � as a function of � in the equation of

state.
(c) First insert the expression of P and � in the equation of mechanical

equilibrium, then use this equation at the stellar surface. Central pressure is
eliminated thanks to the expression of r0.

(d) Use the expression of r0.
(e) We find that r0 D 8:0 107 m. �c D 1:61 105 kg/m3, pc D 3:2 1016 Pa.
(f) Helium ions, protons and electrons all contribute to the pressure. But electrons

do not contribute to the molecular mass of the gas. Let xp be the fractional
number of protons, xHe that of helium ions and xe that of electrons. The
molecular mass of the gas is

M D xpMp C xHeMHe

because the mass of electrons is negligible. Electrical neutrality imposes:

xe D xp C 2xHe

but we also have

xp C xe C xHe D 1

so that we can deduce

2xp C 3xHe D 1
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If Y is the mass fraction of helium andX that of protons then Y D 1�X and

Y D xHeMHe

M and X D xpMp

M
Using this relation and the previous one we get

M D 4

8 � 5Y g=mole

If Y D 0:28, we obtain M D 0:61 g/mole. This value is smaller than that of
protons, in spite of the presence of helium ions. It shows the importance of
electrons in a fully ionized plasma. We deduce

Tc D 1:43 � 107 K

The values of the thermodynamic conditions at the Sun’s centre are therefore
in the right order of magnitude compared to more elaborate models. Poly-
tropic models can thus be used to study some properties of stars without
having to deal with the complexity of a realistic equation of state or other
specificities (like thermal conductivity).

Chapter 3

1. If the flow is irrotational v D r˚ , hence v is perpendicular to surfaces
˚ D Cst. Since streamlines are parallel to v they are also perpendicular to the
equipotentials of ˚ .

2. We first project the equation of momentum along Oz, since v has no component
along ez, we find @zp D ��g H) PA D Patm C �ghA and PB D Patm C �ghB .
Focussing on the streamline going through A and B, Bernoulli’s theorem shows
that V 2

A C PA=� D V 2
B C PB=�, hence hA � hB D .V 2

B � V 2
A/=2g. We have

VASA D VBSB .
3.(a) One may check that r � v D 0 or that ˚ D ˝a2� is a solution for a velocity

potential.
(b) In the outer domain the flow is irrotational and p=� C 1

2
v2 D Cst H) p D

p1 � �˝2a4=.2r2/. In the inner domain, we need Euler equation to derive
the pressure field, which turns out to be p D 1

2
�˝2r2 C P1 � �˝2a2.

(c) This quantity is constant in the outer domain, but depends on r in the inner
domain. There it is constant, only along the streamlines. The constant changes
from one streamline to the other. On the contrary, in the irrotational region,
the constant is the same for all the streamlines.

(d) The vortex central depression is given by P1 � p.0/ D �v2max because the
velocity is maximum at r D a. If v=50 m/s then P1 � p.0/ ' 3250 Pa.
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(e) If the vortex is in the water, the shape of the air–water interface is given
by p(surf)=patm. The flow being purely horizontal, the vertical variations are
given by the hydrostatic balance namely @p=@z D ��g. Therefore, the water
pressure is given by the previous expressions to which ��gz is added. Using
p(surf)=patm, we get the equation of the surface zsurf D ˝2.r2 � 2a2/=.2g/

for the inner domain: this is an axisymmetric paraboloid. For the outer region
zsurf D �˝2a4=.2gr2/, which is the equation of an axisymmetric hyperboloid.

4.(a) i. The flow is irrotational because at t D 0 v D 0, which is irrotational, and
because driving forces derive from a potential.

ii. The flow is steady and irrotational. 1
2
v2Cp=�Cgz is constant everywhere in

the fluid. Using this expression and its constancy at the reservoir’s surface
and in the outflow, we find

dh

dt
D � s

S

p
2gh H) tpurge D S

s

s
2h0

g

where we noticed that the fluid pressure is the same in the two places, and
that the reservoir surface velocity is �dh=dt.

iii. We need to show that the term @˚=@t is very small compared to the others.
The velocity in the reservoir is identical to that of the free surface dh=dt.
Since vz D @˚=@z, we determine ˚ and @˚=@t D .s=S/2gz  gz. The
acceleration term is, as the kinetic energy, very small compared with the
potential energy and pressure terms.

(b) i. The equation for the potential (3.22) written between A and B gives

@t .˚B �˚A/C .v2B � v2A/=2C .pB � pA/=�C g.zB � zA/ D 0:

We should note that˚B �˚A D H B
A

v �d l 	 vBl Because the fluid velocity
is much larger in the tube than in the reservoir, so the part of the path AB
which is in the tube dominates the integral. With the assumptions of the
text, we find that

l
dv

dt
C v2=2 D v21=2

This differential equation is easily solved if we note that 1=.x2 � 1/ is the
derivative of argth.x/. Finally, v D v1 th .v1t=.2l//.

ii. The transient lasts 2l=v1. We should note that this transient corresponds
to the starting motion of the water in the tube, because of its inertia, which
grows with the tube length. Numerically we find 0.58 s.

5.(a) Imposing a jolt to the tube is similar to imposing the fluid an inertial force
f D �a.t/, where a.t/ is the tube’s acceleration. The tube is assumed to be
solid, a is independent of x and the force is a potential force. We may use
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Lagrange theorem. We may observe that the velocity is almost uniform since
the fluid is incompressible and the tube radius small compared to its length.

(b) The foregoing remark implies that ˚A � ˚B D H A
B

v � d l D VL.
(c) We write (3.22) at the two free surfaces of the fluid (at A and B). We find

that @t .˚A � ˚B/C g.zA � zB/ D 0. Let ıh be the level variation at A, then
V D dıh=dt and zA�zB D 2ıh. We find that the surface of the fluid oscillates
at a frequency

f D 1

2�

r
2g

L

6.(a) Here too we may verify that r � v D 0, but it is more efficient to note that the
function ˚ D R

v.r; t/dr is a potential for this velocity field.
(b) In the water r � v D 0, consequently v D C=r2. Noting that at r D R.t/,

v.r; t/ D PR, then v.r; t/ D PRR2=r2.
(c) For an isentropic ideal gas PV� D Cst, thus PR3�=Cst.
(d) The velocity potential is ˚.r; t/ D � PRR2=r . Equation (3.22) used at r D R

gives

RRRC 3 PR2=2 D .p � p0/=� D p0=�
�
.R0=R/

3� � 1� :
(e) If the radius of the bubble slightly oscillates around its equilibrium value then,

setting R.t/ D R0.1 C ".t// with "  1, we find after linearization, that "
follows the harmonic oscillator equation with a frequency:

f D 1

2�R0

s
3�p0

�

Numerically, f(1 mm) = 3262 Hz and f(5 mm) = 652 Hz. These frequencies
corresponds to sound waves that are readily audible and which give birth to
the songs of springs.

7. For a barotropic fluid the equation of vorticity reads

D!

Dt
D .! � r /v � !r � v

We divide this equation by � and subtract the continuity equation times !=�2.
You should have noted that the continuity equation divided by �2 may also be
written:

D.1=�/

Dt
C r � v

�
D 0
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Chapter 4

1. The momentum flux is the same at the inlet and the outlet of the pipe. The
resulting force therefore comes from the pressure field at entrance �R2p1ez and
outlet (��R2p2ez) of the pipe; the sum of it gives ��R2GpLez.

2. From (4.27) and (4.28), we get

Ft D �˛
3

3r � 3 � .r C 1/ ln r

2r � 2 � .r C 1/ ln r
Fp

where r D h1=h2 D 1C ". With a first order expansion in ", we find

Ft D' ˛Fp

3"
D h2

3`
Fp

The needed force is therefore 3:3 10�4 times the weight, so a force similar to that
necessary to lift up a weight of 330 g !

3.(a) On the free surface of the fluid the pressure is constant. The z-component of
Navier–Stokes equation shows that the pressure does not vary along Ox. The
x-component of the Navier–Stokes equation thus gives

�
@2V

@z2
C g sin ˛ D 0

The boundary conditions are v D 0 at z D 0 and @v=@z D 0 at z D h, namely
no-slip at the bottom and stress-free at the surface. The solution is easy to
derive:

V.z/ D g sin ˛

2�
.h� z/z

(b) The volume flux through a cross section is

Q D
Z h

0

V .z/dzS=h D g sin ˛

12�
h2S

4.(a) The flow is axisymmetric (no dependance with respect to �) and invariant
with respect to translation along Oz. We project the Navier–Stokes equation
along e� and verify that the nonlinear terms disappear. The form of the vector
Laplacian in cylindrical coordinates leads to the equation�v.r/� v.r/=r2 D
0. Using (12.44), we get

@

@r

�
1

r

@rv.r/

@r

�
D 0
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which is easily integrated, giving v.r/ D Ar C B=r . The constants A and B
are calculated using the boundary conditions. We find

A D ˝1R
2
1 �˝2R

2
2

R21 � R22
and B D .˝1 �˝2/R

2
1R

2
2

R22 � R21

(b) The torque is defined by C D R
.S/

r � Œ��dS, thus

C D �2�R2L

�
@

@r

v

r

�
rDR2

ez D 4�L
BR�2
2 ez

C D 4�
L
.˝1 �˝2/R

2
1

R22 �R21
where L is the length of the cylinder.

(c) This is possible if one of the cylinders rotates at a given rate and if we
measure the torque exerted on the other cylinder (this is the way viscosities
are measured with the Couette viscometer).

5.(a) The pressure gradient outside the boundary layer is just �UU0.
(b) Mass conservation yields

g0.�/ D U.x/b0.x/
V .x/

�f 0.�/ � U 0.x/b.x/
V .x/

f .�/ (13.4)

while momentum conservation implies

f 00.�/ D b.x/V .x/gf 0Cb2.x/U 0.x/.f 2�1/�b.x/b0.x/U.x/�ff 0 (13.5)

If self-similar solutions exist, then each coefficient depending on x is a
constant. This leads to the requested solutions.

(c) Adding the first and second solutions, we observe that Ub2 D .c1 C c2/xCa,
where a is a new constant. Eliminating b2 from the second relation, we obtain
a differential equation for U whose solution is:

U.x/ D Axc2=.c1Cc2/ and b.x/ D
�
c1 C c2

A

�1=2
xc1=2.c1Cc2/

(d) The three constants c1; c2; c3 give the length and velocity scales. One of them
is therefore arbitrary and we may require that c1=2C c2 D 1 without loss of
generality. With this relation (13.4) gives:

c3g D c1�f=2 � F
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Inserting this in (13.5), we obtain Falkner–Skan equation:

f 00 C FF00 � c2.f 2 � 1/ D 0

Then, it turns out that m D c2=.2 � c2/, so that U.x/ D Axm and b.x/ /
x.1�m/=2

(e) From the form of b.x/, the thickness of the layer is constant if c1 D 0 or if
c2 D 1 and m D 1. Blasius equation is found again when the velocity outside
the boundary layer is uniform, namely when m D 0. Falkner–Skan equation
then reads F 000 C FF00 D 0. It differs from Blasius equation by a factor 2
because b.x/ also misses a factor 2.

Chapter 5

1. The flow associated with the eigenmode of the air column is purely radial,
thus depending only on the distance to the centre of the “sphere”. The pressure
disturbance ıp verifies the wave equation (5.17). Denoting the mode frequency
!, we have .�C !2=c2s /ıp D 0 but ıp � ıp.r/, so that

1

r

d2

dr2
.rıp/C !2

c2s
ıp D 0

whose solution is ıp / sin kr
r

with k D !=cs . At the end of the instrument, at
r D L, ıp D 0 so that the fundamental mode is such that kL D � . Let � be its
frequency (� D !=2�), then L D cs=2�. The bassoon length should therefore
be L D 347=2 � 58:27 D 298 cm, which is quite close to the real length. One
may observe that the dispersion relation of the modes is exactly that of the flute.

2. The mode frequency is proportional to the sound velocity, which is itself
proportional to the square root of the temperature. When the temperature
increases from 10 to 30 ıC (50 to 86 F), the frequency is increased by a factorp
303=283 D 1:035, which a quarter of tone (half a tone between two notes is

21=12 D 1:06). Thus the temperature variation induces a quarter of tone variation
for all the notes of the instrument.

3. The dispersion relation ! D p
gk implies that � D gT2=2� , where � is the

wavelength and T the wave period. Numerically, we find � D 351m and v� D
23m/s. In 57 h, these waves cross 4,800 km.

4. These are shallow water waves. Their velocity is
p

gh D 221m/s. They need 6 h
to cross the Atlantic ocean, thus after two crossing they are back, in phase with
the tidal potential. There is a resonance. This is the reason why the tides on the
Atlantic shores have an important amplitude.
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5. We need to use expressions (5.37) and (5.42) with a finite depth. It follows that

!2 D .�e � �a/gk C �k3

�e C �a th .kH/
th .kH/

In the shallow water conditions kH  1, so that

!2 D .1 � �a=�e/gHk2 C �H

�e
k4

6. From the equation of state of an ideal gas:

T2

T1
D P2

P1

�1

�2
D
�
1C 2�

� C 1
.m � 1/

��
.� � 1/mC 2

.� C 1/m

�

where we set m D M2
1 . T2=T1 > 1 is equivalent to

.� C 1C 2�.m� 1//
�
� � 1C 2

m

�
> .� C 1/2

This inequality may also be written:

.� � 1/.�mC 1/.1� 1=m/ > 0

which is true when m > 1.
7.(a) Starting from the second jump condition (5.68), we eliminate v2, thanks to the

first condition (5.67). We thus derive the expression of v1 then that of v2.
(b) Using the definition of Fr2, (5.67) and (5.69) we can derive the requested

expression. Then

Fr2 S 1 ” 2Fr2=31 S
q
1C 8Fr21 � 1

Raising this expression to the cubic power, after simplification, we find

q
1C 8Fr21 S 1C 2Fr21 ” 1 S Fr21

which is the requested result.
8. We have

d

d�

Z C1

�1
�dx D

Z C1

�1
@�

@�
dx D

Z C1

�1

�
�3
2
�
@�

@x
� 1

6

@3�

@x3

�
dx

Since the function and its second derivative are vanishing in ˙1, we note that
the first integral is independent of time. It reflects mass conservation: the integral
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indeed measures the area below the curve �.x/. This area is, in two-dimension,
the volume and therefore also the mass since � DCst.
Proceeding in the same way for the second integral, it turns out that

d

d�

Z C1

�1
�2dx D �

�
@�3

@x

�C1

�1
� 1

3

�
�
@2�

@x2

�C1

�1
C 1

6

"�
@�

@x

�2#C1

�1
D 0

The conserved quantity is here related to the mechanical energy of the system.

Chapter 6

1. The instability can develop only if Jeans length is smaller that the diameter of the
sphere. Since the density is constant, � D 3M=4�R3. Writing �J < 2R we get

R < Rc D 3GM

�2c2s

where G is the gravitation constant and cs is the sound velocity. If we observe
that GM=R is nothing but the order of magnitude of the escape velocity squared
at the surface of the sphere, then the foregoing inequality just means that the
molecular velocity (which is similar to the sound velocity), need to be smaller
than the escape velocity. The system is gravitationally bound: one may check
that the internal energy of the gas is indeed less than the absolute value of the
gravitational energy of the sphere. Numerically, we find thatRc D 1:2 light-year.
An interstellar cloud with diameter of one light-year is stable, while a bigger one
with diameter of 10 light-years is unstable (according to this model of course).

2.(a) The specific angular momentum s2˝.s/ needs to be a growing function of s
(see Sect. 6.2.1).

(b) We write Euler’s equation in cylindrical coordinates. The disturbances of the
flow s˝.s/ verify:

8<
:
.�C im˝/us � 2˝u� D � @p

@s

.�C im˝/su� C us
@
@s
.s2˝/ D �imp

@
@s
.sus/C imu� D 0

(13.6)

where the third equation is just r �u D 0. We observe that in the first and third
domain @

@s
.s2˝/ D 0, while in the second @

@s
.s2˝/ D 2As.

(c) The radial component of the velocity and the pressure need to be continuous.
(d) Using the three previous (13.6), we eliminate the pressure and u� . Then, we

observe that in the equation of u the original flow intervene through @
@s
1
s
@s2˝
@s

,
which is zero in the three domains.
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(e) The solutions are :

domain I uI.s/ D A1s
m�1

domain II uII.s/ D A2s
m�1 C B2=s

mC1

domain III uIII.s/ D B3=s
mC1

(f) Using the last two equations of (13.6), we get the pressure perturbation:

m2p D im2asu � .�C im˝/s
@

@s
.su/

With the continuity of pressure and u, we derive the interface conditions:

�.�C im˝/��
2u0

I.�/ D im2A�uII.�/ � .�C im˝/��
2u0

II.�/

�.�C im˝/1u
0
III.1/ D im2AuII.1/� .�C im˝/1u

0
II.1/

uI.�/ D uII.�/ and uII.1/ D uIII.1/

(g) These four conditions lead to the requested relation. After elimination of A1
and B3, we verify that A2 and B2 are solutions of

�
.�C im˝�/.A2 � B2��2m/ D .2iA C �/.A2 C B2�

�2m/
.�C im˝1/.A2 � B2/ D .2iA � � � im˝1/.A2 C B2/

(13.7)

(h) If m D 1 we find that .� C i˝0=2/
2 D �˝2

0=4 namely that � D 0 or
� D �i˝0. In the two cases the perturbation is neutral, hence the stability. If
m D 2, we find again that � D �i˝0.

3. Fjørtoft theorem : Taking the real part of (6.21) we get:

Z b

a

�
.jD j2 C k2j j2/C kj j2U 00.��I C kU/

j�C ikUj2
�

dz D 0

where �I is the imaginary part of �. We consider the case where the instability
develops so that �R ¤ 0. In this case, because of Rayleigh condition (6.22), we
know that

Z b

a

U 00j j2
j�C ikUj2 dz D 0

The �I -term therefore disappears. Hence, we can replace �I by any constant we
wish. We choose to replace �I by kA, which leads to (6.82). We conclude that

Z b

a

k2j j2U 00.U � A/

j�C ikUj2 dz D �
Z b

a

.jD j2 C k2j j2/dz < 0
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which is possible in Œa; b� only if there exists some interval where the quantity

U 00.U �A/

is negative. The constantA is not fixed so we may choose the value of the velocity
at the inflexion point. Since U 00 and U �A change sign at this point, we see that
all the profiles where U 00 and U � A are of the same sign can be considered as
stable. This stability criterion can be expressed in simpler way: If there exists a
constantA such that U 00.U �A/ > 0 in the whole interval Œa; b� then  D 0 and
the solution is stable.

Chapter 7

1. Writing dh D Tds C dP=� D cpdT, we get a relation on the gradients. Noting
that rP D �g we get:

rT � g
cp

D Trs=cp

Since .rT /ad D g
cp

, we derive the requested relation.

Using (7.8) we derive rTpot D Tpot

cp
rs and thus (7.9).

2. In the standard model of the stratosphere the temperature gradient is positive
or zero. This is certainly larger than the adiabatic, which is negative. The
stratosphere is therefore a stable layer as its name reflects.

3. Let Av be amplitude of the dimensionless velocity u. From the chosen scales we
get:

Re D Vd

�
D 

�
Av D Av

P
From the definition of the stream function, we have

u2 D jD j2 C k2j j2 D 3�2=2j j2 D A2v :

The amplitude for  is given by (7.71) and thus

Re D 6�

P
p
" D 6�

s
Ra � Rac

RacP2
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4. We linearize the Lorenz equations around zero. The perturbations ıX; ıY; ıZ
verify

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

dıX

dt
D P.ıY � ıX/

dıY

dt
D rıX � ıY

dıZ

dt
D �bıZ

(13.8)

We look for a solution proportional to e�t , and get � by setting the determinant
of the system to zero. Hence,

�2C.PC1/�CP.1�r/ D 0 H) 2� D �.PC1/˙
p
.P C 1/2 C 4P.r � 1/

When r > 1 one of the root has a positive real part showing that the system is
unstable.

Chapter 8

1. The demonstration is carried out in three steps:

• We break the velocity field into two parts: the relative velocity vr and the
background velocity � � r

v D vr C � � r

The acceleration reads

Dv
Dt

D @vr
@t

C .vr � r/vr C .� � r/ � rvr C � � vr C � � .� � r/

where we used

.vr � r /� � r D � � vr and Œ.� � r/ � r �� � r D � � .� � r/

• In the second step, we observe that vr should be expressed with the vectors
attached to the rotating frame, which are time-dependent. In other words, we
are not interested in vr but in v0 which is such that vr D Œ˝�v0. Œ˝� represents
the rotation which transform the new coordinates into the old ones. We now
assume that � D ˝ez. We have
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rDŒ˝�r0; rDŒ˝�r 0; vr � rDv0 � r 0 and Œ˝�D
�

cos˝t � sin˝t
sin˝t cos˝t

�

It is easily verified that:

@vr
@t

D Œ˝�
@v0

@t
C Œ P̋ �v0 D Œ˝�

�
@v0

@t
C � � v0

�

Applying the rotation to all the vectors of the equation, we find the equation
verified by v0, namely

Dv0

Dt
C 2� � v0 C .� � r/ � rv0 C � � .� � r0/ D f0

• In the last step, we observe that the new coordinates depend on the old ones
and on time. Hence

@v0

@t
.r; t/ D @v0

@t
.r0; t/C @r0.r; t/

@t
� r 0v0

but

r0 D Œ˝��1r D Œ�˝�r H) @r0.r; t/
@t

D �� � r0

which removes the term .� � r/ � rv0 and yields the expected result.

2. When viscosity is taken into account the following term

E
Z
.V /

u � ��u dV

is important. Introducing Œ�v� as the viscous stress tensor, the foregoing integral
may also be written

Z
.V /

u�
i @j �

v
ijdV D

Z
.S/

u�
i �

v
ijdSj �

Z
.V /

@j u�
i �

v
ijdV

Because of boundary conditions, the surface integral is always zero (either for
no-slip or stress-free conditions). The volume integral is real. Observing that
�v

ij D E.@jui C @iuj /, we get

Z
.V /

@j u�
i �

v
ijdV D E

2

Z
.V /

j@jui C @iuj j2dV

This integral is truly real, therefore the bounds of the eigenspectrum are not
modified.
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3. The easiest way is to start from the expressions of vr and vz given by (8.29)
and (8.30), which we combine to eliminate the pressure field. We get

1 � !2

i!

@vs
@z

D i!
@vz

@s

but vs D 1
s

@ 

@z , vz D � 1
s

@ 

@s
.

Making the substitution, we obtain the equation for  :

@2 

@s2
� 1

s

@ 

@s
�
�
1 � !2
!2

�
@2 

@z2
D 0

which is similar to the Poincaré equation. The only change is the sign of 1
s

@ 

@s
.

The equation is however still of hyperbolic type with the same characteristics.

Chapter 9

1.(a) From the definitions

˝Ov�
i .k/Ovj .k0/

˛ D
�Z

vi .x/eik�x d3x
.2�/3

Z
vj .x/e�ik0�x d3x

.2�/3

�

where we noted that vi is real. Here we transform this expression into a double
integral:

D
Z Z ˝

vi .x/vj .x0/
˛
eik�x�ik0�x0 d3x

.2�/3
d3x0

.2�/3

setting x0 D x C r and splitting the integrals over x and r, we get

D
Z
Qij.r/e�ik0 �r d3r

.2�/3„ ƒ‚ …
�ij.k0/

Z
e�i.k0�k/�x d3x

.2�/3„ ƒ‚ …
ı.k0 � k/

hence the result.
(b) We have

Zij D
Z D

!0
i .x/!

0
j .x

0/
E
e�ik�r d3r

.2�/3
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or

D �ilm�jnp

Z D
@lv

0
m.x/@nv0

p.x
0/
E
e�ik�r d3r

.2�/3

But

@lv
0
m.x/ D

Z
ikl Ovmeik�xd3k; @nv0

p.x/ D @nv0�
p D �

Z
ik0
l Ovme�ik0�xd3k0

Using the result of the previous exercise, we have

D
@lv

0
m.x/@nv0

p.x
0/
E

D
Z
klkn�mp.k/eik�rd3k

Using this expression in that of Zij we get the requested expression. The
final formula (9.28) is derived after an expansion of �ilm�jnp (given in the
complements of mathematics) and after the use of the incompressibility
relation (9.23).

(c) We note that

�ii.k/ D 1

.2�/3

Z
Qii.r/e

�ikr cos � r2dr sin �d�d'

Using
R �
0
e�ikr cos � sin �d� D 2 sin kr=kr and (9.33) we derive the requested

result.
2. We start from the definition (9.46) and modify it into

`Z D ˝.0/�1
Z 1

0

˝.r/dr

where ˝.r/ D Qii.r/ D �6�R.r/, � being the Laplacian. It is sufficient
to use (9.35) and the expression of the Laplacian in spherical coordinates (see
12.45), to get the desired expression. To show the similarity between D̀ and `Z ,
we may consider the Kolmogorov spectrum where kD � k0. Its energy density is
negligible beyond kD . Then it is easy to show that `Z 	 D̀ .

3.(a) A short integration by part yields the result.
(b) A Taylor expansion of the functions at the origin yields .sin kr � kr cos kr/=

.kr/3 	 1=3. The result follows.
(c) From E.k/ D CKh"i2=3k�5=3, if we set x D kr then

S2 D CKh"i2=3r2=3
Z 1

0

q.x/dx

One should check that the integral converges. C2 and CK are proportional
since C2 D CK

R1
0
q.x/x�5=3dx.
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(d) If S2 / r2=3Cm, then E.k/ / k�5=3�m. In the case of the law (9.76), m D
14
9

� 2 � 2
3

�2=3 D 0:02927 if ˇ D 2=3.
4. From the Definition (9.49) and after splitting over the various domains

`2
T

D

Z k0

0

i.k/dk C
Z kD

k0

k�5=3 C
Z 1

kD

d.k/dk

Z k0

0

k2i.k/dk C
Z kD

k0

k1=3dk C
Z 1

kD

k2d.k/dk

Taking an upper bound of the numerator and a lower bound of the denominator,
and then doing the opposite, we can construct a lower and upper bound for `2

T
,

namely:

2=3k0
�2=3

k0
4=3 C 3=4kD

4=3 C 5kD
4=3

� `2
T

� k0
�2=3 C 2=3.k0

�2=3 � kD
�2=3/C kD

�2=3

3=4.kD
4=3 � k4=30 /

The result follows since kD � k0.
5. We note that

hxpi D ˝
ep ln x

˛ D
D
ep.ln x�hln xi/

E
ephln xi

setting y D .ln x � hlnxi/, we have

hepyi D
C1X
nD0

pn hyni
nŠ

however, y is a random variable with a normal distribution, thus hyni D 0 if n is
odd. It follows that

hepyi D
C1X
mD0

p2m
˝
y2m

˛
.2m/Š

:

For a normal law of probability even order moments just depend on the
variance of the random variable, namely

˝
y2m

˛ D .2m � 1/ŠŠ�2m (which can
be demonstrated by induction) where

.2m � 1/ŠŠ=.2m/Š D 2�m=mŠ :

It follows that

hepyi D
C1X
mD0

1

mŠ

�
p2�2

2

�m
D ep

2�2=2

hence the result.



13 The Solutions of Exercises 501

Chapter 10

1. The electric current generated by free charges of density �e comes from the
matter motion and reads �ev. From Gauss equation r � E D �e="0 and the
induction equation @tB D �r � E, we find the following order of magnitude
relations:

�ev 	 "0EV=L 	 V 2=c2.B=
0L/ 	 V 2=c2j

Thus j � �eV and jj � Bj � �eVB 	 �eE . The Laplace force is always larger
than the Coulomb force coming from the local electric field.

2. The mean magnetic field verifies:

@B
@t

D r � .˛B/C �turb�B

Taking B D B0 exp i.!t C k � r/, we get

i!B D ˛ik � B � �turbk
2B

Taking the cross product of this expression with k and reporting the new
expression in the first, we derive the dispersion relation:

.i! C �turbk
2/2 D ˛2k2

which shows that all the waves whose wavenumber is smaller than j˛j=�turb are
amplified.

Complements of Mathematics

1. To derive one expression from the preceding one we just need to contract two
indices and note that ıii D 3.

2. If [A] is symmetric then Aij D Aji, thus

�ijkAjk D �ijkAkj D ��ijkAkj D ��ijkAjk

The reciprocal is also true: if �ijkAjk D 0 then

�lmi�ijkAjk D 0 ” .ıljımk � ılkımj/Ajk D 0 ” Alm � Aml D 0

thus [A] is symmetric.
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3. This is indeed a Sturm–Liouville problem. Identifying the terms, we find p.x/ D
1, q.x/ D 0 and w.x/ D 1. The general solution is:

y.x/ D Aeax C Be�ax

with a D p��. The boundary conditions y.0/ D y.1/ D 0 imply that
AC B D 0 and sh a D 0. Thus a D in� with n 2 N. The eigenvalue spectrum
is therefore the set fn2�2 j n 2 Ng. It is discrete and has a lower bound as
expected.
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Acceleration, 16
Acoustics, 155
Advection, 5

versus convection, 241
Air bubble, 107
Alfvén

speed, 390
waves, 392

Amplitude equation, 220
Analogy

electrostatic, 84
inverse, 85

Analysis
global, 152
local, 150

Anelastic approximation, 245, 251
Antidynamo theorem, 397
Approximation

anelastic, 245
Boussinesq, 245

Archimedes, 1
theorem, 61

Atmosphere
standard, 56
unit, 21

Average (ensemble), 325
Avogadro number, 416

Bénard, H., 1
Bar, 21
Baroclinic, 32, 253

torque, 96
Barye, 21

Bernoulli, D., 1
ˇ-plane, 304
Bhatnagar, P.L., 436
Bingham fluid, 45
Binormal vector, 459
Biot and Savart’s law, 98
Biot number, 214
Blasius’ equation, 131
Boltzmann equation, 421–429
Boltzmann H-theorem, 446
Boundary conditions, 32
Boundary layer, 125

separation, 130
Boussinesq, J., 1, 245

approximation, 245
Brunt–Väisälä (frequency), 163
Bryan, G., 302
Buoyancy

centre of, 62
force, 62

Burgers equation, 186

Cahn–Hilliard equation, 283
Catenoid, 64
Central limit theorem, 352
Centre of buoyancy, 62
Cepheid stars, 174
Chapman–Enskog, 437
Chapman–Proctor equation, 281
Characteristics, 166, 464
Circulation, 77
Closure, 324
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Coefficient of
drag, 142
lift, 142

Collision, 409
integral, 423
invariant, 430, 448

Complex potential, 86
Compressibility, 79
Compression wave, 167
Concave function, 356
Conductivity

electric, 380
thermal, 411

Conformal transformation, 86
Connected, 81
Constraints (Reynolds), 328
Contact angle, 65
Continuous media, 2
Convex, 356
Coriolis frequency, 292
Correlation

double, 328
length, 323
time, 323
two-points, 328
velocity, 330
vorticity, 332

Cowling theorem, 397
Critical

layer, 202
wavenumber, 263

Crocco’s equation, 72
Cumulant, 326
Curl, 7
Curvature force, 388

Deborah number, 38
Debye length, 380
Dense spectrum, 303
Detached shear layer, 202
Differential cross section, 424, 445
Diffusion

equation, 466
of vorticity, 113

Diffusivity
magnetic, 382
thermal, 27

Dispersion relation, 151, 155
of acoustic modes, 156
capillary waves, 161
internal waves of gravity, 162
surface gravity waves, 159

Dissipation
scale, 341
viscous, 115

Distribution function, 417
Divergence, 8
Drag, 92

coefficient, 142
force, 142

Dynamo
effect, 394
kinematic, 395
Ponomarenko, 398

EDQNM theory, 357
Eigenmode, 152, 156
Einstein notation, 453
Ekman

circulation, 310, 311
layers, 306
number, 293
pumping, 310, 311
spiral, 308

Electrical conductivity, 380
Ellipsoidal coordinates, 302
Elliptic (equation), 468
Elsässer variables, 390
Emden equation, 69
Ensemble average, 325
Enstrophy, 336
Entrainment constant, 366
Entropy (equation of), 27
Epicyclic frequency, 196
Equation

Crocco’s, 72
of diffusion, 113, 466
elliptic, 468
of energy, 27
of entropy, 27
Euler, 21, 71
of Kármán–Howarth, 347, 348, 351
Kolmogorov, 349
Laplace, 302, 468
Liouville, 418–420
parabolic, 466
Poincaré, 301
of sound propagation, 153
Stokes’, 114

Equatorial singularity, 309
Equipartition solution, 390
Error function, 468
Eucken relation, 445
Euler force, 313
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Euler, L., 1
Expected value, 326

Falkner–Skan equation, 147, 491
Figurative point, 419
Filamentation, 371
Fjørtoft, R., 201

theorem, 238, 494
Flow (Poiseuille), 123
Fluid (perfect), 71–109
Flute, 155
Formula (Stokes), 144
Four-fifth law, 350
Fourier law, 27, 411
Frenet frame, 459
Frequency (Brunt–Väisälä), 163
Friedrich diagram, 394
Froude number, 177
Function(al), 115

harmonic, 86
structure, 327, 353

Geostrophic
balance, 293
contours, 295
flow, 293

Granules, 286
Gravitational instability, 192
Gross, E.P., 436

Head
hydraulic, 75
loss, 76, 137

Heat flux, 26
Hectopascal, 21
Helmholtz, 1
Helmholtzian, 107
Hill’s (vortex), 100
Hurricanes, 316
Hydraulic jump, 175
Hyperbolic (equation), 465

Ill-posed problem, 301
Incompressible fluid, 111
Incompressible viscous fluids, 111–147
Inertial

modes, 299
waves, 298

Infrared spectrum, 338, 369
Integral scale, 340

Inverse cascade, 369
Ionosphere, 56
Irreversibility, 29
Irrotational, 80
Isochore, 52

Jeans length, 193, 493
Jet (turbulent), 374
Joukovski’s transformation, 87, 108
Jurin, J., 66

K41, 341
Kármán–Howarth equation, 347, 348, 351
Kelvin, 1

model, 39
theorem, 77

Kelvin–Helmholtz instability, 203
Kinematic viscosity, 24
Kinetic theory, 407
Knudsen number, 2
Kolmogorov, A., 2

constant, 342
equation, 349
hypothesis, 342
scale, 341
spectrum, 342

Krook, M., 436
Kutta’s condition, 94

Lagrangian formalism, 4, 45, 48
Laminar, 125
Landau

constant, 221
equation, 221, 275

Laplace
equation, 302
transform, 467

Law
four-fifth, 350
Fourier, 27
of similarity, 112

Legendre’s polynomials, 91, 118
Length, Debye, 380
Lift, 92

coefficient, 142
Lift-up effect, 237
Liouville

equation of, 418–420
theorem, 420

Liquids, 31
Local instability, 191
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Log-normal (theory), 350
Log-Poisson (theory), 355
Longitudinal (wave), 155
Lorenz model, 284

Mach number, 164
Magnetic

diffusivity, 382
Prandtl number, 382
presssure, 388
Reynolds number, 383
tension, 388

Magnetohydrodynamics, 379–405
Magnetosonic waves, 392–394
Magnus force, 94
Marangoni number, 213
Marangoni–Bénard, 36
Maxwell

equations, 381
tensor, 385

Maxwell–Boltzmann distribution, 446–451
Millibar, 21
Mixing length, 360
Mode, acoustic, 155
Model

closure, 359
K-", 361

Moment, 326
Multiscale analysis, 278

Navier, H., 1
Navier–Stokes equation, 25
Newton, I., 1
Newtonian fluids, 22
Non-newtonian fluids, 37
Non-normal operator, 231
Number

Biot, 214
Deborah, 38
Ekman, 293
Froude, 177
Knudsen, 2
Mach, 164
magnetic Reynolds, 383
Nusselt, 277
Péclet, 252
Prandtl, 27
Rayleigh, 246
Reynolds, 113
Richardson, 209
Rossby, 293

Nusselt number, 277

Oberbeck, A., 1
Obukhov, A., 343, 350
Operator (non-normal), 231
Optimal perturbations, 226–237
Orr mechanism, 237
Orr–Sommerfeld equation, 227
Oseen’s equation, 121
Ozmidov scale, 371
Ozone layer, 56

Parabolic equation, 464, 466
Pascal, B., 1
Pascal (unit), 21
Pdf, 326
Péclet number, 252
Piezometric height, 76
Pitot tube, 76
Plane at incidence, 108
Planetary modes, 305
Plasma, 379
Poincaré’s equation, 301
Poiseuille’s flow, 134
Poiseuille, Jean-Louis-Marie, 1
Poloidal field, 397
Ponomarenko dynamo, 398
Potential

complex, 86
velocity, 80
vorticity, 107

Prandtl, L., 2, 360
equation, 129
number, 27

Pressure
dynamic, 73, 142
units, 21

Probability
density function, 326
distribution function, 326

Probability distribution, 326
Projection tensor, 335
Prout, W., 1
Pseudo-scalar, 331
psi, 21

Radiative shocks, 174
Radius of curvature, 458–459
Radius, van der Waals, 409
Rate-of-strain tensor, 7, 22
Rayleigh, 1

equation, 200
number, 246

Reduced pressure, 293
Regular (head loss), 137
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Resolvent set, 232
Reversibility, 115
Reynolds, O., 2

stress, 328
stress tensor, 329

Richardson number, 209
Riemann invariant, 166
Rossby

number, 293
waves, 303

Rotating fluids, 291–321
Rumford, 1

Saint-Venant’s (relation), 73
Schwarzschild’s criterion, 258
Second viscosity, 23, 440
Self-gravitating fluid, 57
Self-similar solutions, 490
Self-similarity, 132, 365, 467
Separation of scale, 409
Shear

tensor, 7, 24
viscosity, 23

Similarity, 112
Singularity (equatorial), 309
Smagorinsky, J., 360
Smoke ring, 102
Solar mass, 193
Solitary wave, 178, 187
Solvability condition, 280
Sound, 153

waves of finite amplitude, 165
Specific entropy, 13
Spectra, 335
Spectral

correlations, 333
methods, 463

Spectrum, 232
enstrophy, 336
helicity, 336

Sphere, 117
Spherical harmonics, 305
Spin-up flow, 311
Spiral (Ekman), 308
Squire equation, 227
Stability, 191–239
Stagnation point, 94
Static of fluids, 51
Steady flow, 72
Stokes, G., 1

equation of, 114
formula, 144
hypothesis, 25

Strain (rate of), 22
Stratosphere, 56, 495
Streaks, 236
Stream function, 9
Streamlines, 5, 73, 86
Stress, 2

tensor, 14
Structure functions, 327
Sturm–Liouville problem, 462
Subgrid

models, 360
scales, 360

Supernova, 205
Surface gravity waves, 157
Surface tension, 35, 63

Taylor–Couette flow, 146
Taylor–Goldstein equation, 208
Taylor–Proudman theorem, 294
Taylor scale, 348
Tensor

projection, 335
a short introduction to, 453
velocity gradient, 6

Tensorial product, 454
Theorem

antidynamo, 397
Bélanger’s, 139
Bernoulli’s, 72
central limit, 352
Cowling, 397
Fjørtoft, 494
frozen field, 387
Kelvin’s, 77
Lagrange’s, 82
minimum kinetic energy, 83
Taylor–Proudman, 294

Theory
log-normal, 350
log-Poisson, 355

Thermal
agitation, 411
conductivity, 27
diffusivity, 27

Thermosphere, 56
Time correlation, 323
Topology, 81
Toroidal field, 397, 402
Torr, 21
Torricelli, E., 1
Torricelli law, 75
Torsion, 459
Total wetting, 66
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Trace of a tensor, 454
Transport

diffusive, 113
dynamic, 113
macroscopic, 113
microscopic, 113

Triple correlations, 338
Tropopause, 56
Troposphere, 56
Tsunami, 186
Turbulence, 323–377

inhomogeneous, 359
isotropic, 331, 336
rotating, 371
stratified, 371
two-dimensional, 367
universal, 341

Turbulent
cascade, 343
jet, 364
plume, 364

Van der Waals radius, 409
Variables, Elsässer, 390
Variational principle, 115
Viscoelasticity, 39
Viscometer (Couette), 490
Viscosity, 22

bulk, 23
kinematic, 24
second, 23, 440

shear, 23
turbulent, 359

Viscous diffusion, 112
Viscous dissipation, 28
Vortex

Hill’s, 100
Rankine’s, 100
ring, 102
sheets, 99

Vorticity, 7, 113

Wake, 139
Wave equation, 154
Waves

capillary, 160
in fluids, 149–189
inertial, 298
internal gravity, 161
longitudinal, 155
Rossby, 303
sound, 153
surface, 157

Wet convection, 317
Wetting (total), 66
Wetting angle, 65
Wind instruments, 155
Wing stall, 142

Young formula, 65
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